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ABSTRACT

Arrowtooth Flounder (Atheresthes stomias, Turbot) are an important component of the bottom66

trawl fishery in British Columbia. They are managed as a coastwide stock, with a current TAC67

of 5,000 t and catch of 3,051 t in 2021. Prior to the introduction of freezer trawlers in the mid-68

2000s, most of the historical catch of Arrowtooth Flounder is understood to have been discarded69

at sea. This was largely due to proteolysis, which occurs in the muscle tissue of this species70

a short time after it is caught, making the flesh unpalatable. In the past decade, markets have71

been established for fillets that have been frozen at sea, and the freezer trawl fleet has taken an72

increasing proportion of the coastwide catch.73

This assessment fits a two-sex two-fleet Bayesian age-structured model to catch, survey, and74

age-composition data from the years 1996–2021 for management areas 3CD (West Coast75

Vancouver Island), 5AB (Queen Charlotte Sound), 5CD (Hecate Strait), and 5E (West Coast76

Haida Gwaii) combined. Catch data prior to the introduction of at-sea observers in 1996 were77

considered too unreliable for inclusion in the assessment due to unknown quantities of discarding78

at sea.79

The base model presented in this assessment estimates the 2022 median spawning biomass80

to be 67,770 tonnes and to have been on a decreasing trajectory since approximately 2012.81

Reference points based on maximum sustainable yield (MSY) were strongly impacted by estimates82

of selectivity in the trawl fisheries. Reference points based on fractions of B0 (unfished spawning83

biomass) were chosen instead, as was done in the last assessment. The median 2022 spawning84

biomass was projected to be below the USR (Upper Stock Reference) 0.4B0 and above the LRP85

(Limit Reference Point) 0.2B0. There was zero probability the spawning biomass was below86

the LRP 0.2B0 in 2022. Sensitivity analyses were done to test the effects of fixed parameters,87

prior probability distributions, and input data treatment on model outcomes. In several sensitivity88

models, there were poor MCMC (Markov chain Monte Carlo) diagnostics or unreasonable estimates89

of selectivity and/or catchability. A series of retrospective model runs back eight years indicated a90

distinct breakpoint when 2019 data onwards were added. Since 2019, the data cause declines in91

estimated spawning biomass over the last decade.92

Management advice is provided in the form of decision tables that forecast the impacts of a93

range of 2022 catch levels on Arrowtooth Flounder stock status relative to these reference points.94

The base-model decision table suggests that a 2022 catch equal to 4,000 t (1,000 t less than the95

2022 TAC), would result in a 2023 biomass being below the USR of 0.4B0 with a probability 0.627.96

The same catch would give a zero probability of the 2023 biomass falling below the LRP of 0.2B0.97

A 2022 catch equal to 15,000 t would result in a 2023 biomass with a 0.03 probability of being98

below the 0.2B0 LRP.99

The magnitude of catch and discards prior to 1996 as well as a lack of earlier fisheries independent100

surveys is a major source of uncertainty in this assessment that makes it challenging to assess101

the scale and productivity of the stock. The use of a stitched geostatistical survey to replace the102

separate synoptic survey indices could help resolve some issues fitting the Queen Charlotte103

Sound Synoptic survey index, which has a lower rate of decline than the other survey indices.104

After evaluating ecosystem considerations and known biology of the stock, there are no clear105

indications that current environmental conditions should modify the catch advice in this assessment.106

Given the proximity of spawning biomass to the LRP under the base model and most sensitivity107

analyses, as well as the declining survey indices, it is suggested that this stock assessment be108

updated with new data in approximately two years when one additional survey has been run in109

each area of the coast.110
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1. INTRODUCTION

Arrowtooth Flounder (Atheresthes stomias, Family Pleuronectidae, also commonly called Turbot),111

is a species of flatfish that occurs in the offshore waters of British Columbia (British Columbia).112

Arrowtooth Flounder are primarily taken by the groundfish bottom trawl fishery, although they113

are also encountered by hook and line fisheries, particularly those targeting Pacific Halibut114

(Hippoglossus stenolepis). Prior to the introduction of freezer trawlers in the British Columbia115

groundfish fleet in the mid-2000s, most of the historical catch of Arrowtooth Flounder is understood116

to have been discarded at sea. Proteolysis occurs in the muscle tissue of this species a short117

time after it is caught, making the flesh mushy and unpalatable. In the past five years, Asian118

markets have been established for fillets that have been frozen at sea as soon as possible after119

capture to reduce proteolysis. There is also an Asian market for the frills. The stock was last120

assessed by Grandin and Forrest (2017), who presented an age-structured Bayesian model121

using the ISCAM platform (Martell 2011). This stock assessment covers the combined Pacific122

Marine Fisheries Commission (PMFC) major areas 3CD and 5ABCDE off the west coast of123

British Columbia.124

1.1. PURPOSE OF DOCUMENT

Arrowtooth Flounder is managed as a coastwide stock in British Columbia with the majority of125

the catch coming from Pacific Marine Fisheries Commission (PMFC) major areas 3CD; West126

Coast Vancouver Island, 5AB; Queen Charlotte Sound Synoptic Survey and 5CD; Hecate Strait127

(Figures 1 and 2, Table 3). The Strait of Georgia (management area 4B) is not included in this128

stock assessment. The Total Allowable Catch (TAC) has been 5,000 t since February 21, 2020.129

The TAC was 15,000 t for many years prior to the reduction in 2020. February 21 is the start date130

for the Arrowtooth Flounder fishery each year.131

The purpose of this stock assessment is to update management advice for Arrowtooth Flounder132

stocks in British Columbia as requested by the Pacific Groundfish Management Unit (GMU).133

This assessment identifies reference points for Arrowtooth Flounder that are consistent with the134

DFO Decision-Making Framework Incorporating the Precautionary Approach (DFO 2009) and135

characterizes stock status relative to these reference points using a Bayesian, age-structured136

stock assessment model. Management advice is provided in the form of decision tables, which137

forecast the impacts of a range of harvest levels on Arrowtooth Flounder stock status relative to138

these reference points.139

1.2. BIOLOGICAL BACKGROUND

Arrowtooth Flounder are distinguished by their large mouth and arrow-shaped teeth, for which140

the species is named. Their distribution ranges from Baja California to the eastern Bering Sea141

(Hart 1973). In British Columbia, the species inhabits depths from 50–900 m (Fargo and Starr142

2001).143

Arrowtooth Flounder exhibit sexual dimorphism. After sexual maturity, females grow faster than144

males and reach a larger maximum size (Appendix A, Figure A.4). Theoretical maximum length,145

L∞, is estimated to be 61.8 cm for females and 47.2 cm for males in British Columbia although146

the maximum sizes that have been observed are 97 cm for females and 79 cm for males (Figures A.1147

and A.4). Age-at-50%-maturity for females is thought to occur around age 5.6 y for females and148

4.1 y for males (Figure A.5). The maximum observed age is 27 y for females and 23 y for males.149
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There were few observations of fish over 20 y in the dataset, and this assessment assumes a150

plus group of 20 y (Figure A.2).151

Arrowtooth Flounder are batch spawners with peak spawning occurring at depths deeper than152

350 m in the fall and winter months, although the timing of spawning may vary inter-annually153

(Rickey 1995). The species produces pelagic eggs, followed by a pelagic larval stage that may154

last several months (Rickey 1995). Fecundity of this species is poorly understood (Cosimo155

1998). One- and two-year-old fish occupy shallower depths than adults, but by the age of three156

or four years old, they are generally found in deeper water with adults (Fargo and Starr 2001).157

Arrowtooth Flounder appear to occupy separate spawning (winter) and feeding (summer) areas,158

and undergo seasonal bathymetric movement from shallower to deeper water in the fall and159

winter (Fargo and Starr 2001).160

Arrowtooth Flounder have a diet comprised of zooplankton, fish, and benthic invertebrates.161

Juveniles feed primarily on mobile prey such as euphausiids, cumaceans, carideans, and amphipods.162

Adults are more piscivorous and cannibalistic, feeding on Pacific Herring (Clupea pallasii), juvenile163

Walleye Pollock (Theragra chalcogramma), and Pacific Sandlance (Ammodytes hexapterus),164

among other species (Fargo et al. 1981; Yang 1993).165

1.3. FISHERY AND MANAGEMENT HISTORY

Prior to 2006 there were no limits on the amount of Arrowtooth Flounder that could be caught.166

In 2006 a TAC of 15,000 t was established and it remained at this level until 2017. In 2017, the167

TAC was increased to 17,500 t and remained there for two years until it was reduced to 14,000~t168

in 2019 as a precautionary measure to address concerns raised by the commercial trawl fleet169

about their oberved reduction in abundance of Arrowtooth Flounder. On January 30, 2020 GTAC170

recommended urgent, late changes to the 2020/21 Integrated Fisheries Management Plan171

(IFMP) to address declining Arrowtooth Flounder abundance on traditional fishing grounds (DFO172

2020). These changes included:173

• Reducing the 2020/21 TAC from 14,000 t to 5,000 t174

• Reducing the 2019/20 quota carryover allowance from 30% to 10%175

• Reducing the amount of temporary quota a licence can hold from 16% to 8% percent of the176

TAC177

• Implementing new spatial closures from November 1 to March 31 to limit harvest of spawning178

aggregations179

These management measures significantly limited the directed Arrowtooth Flounder fishery and180

were intended to facilitate non-targeted harvesting.181

Before the TAC reduction to the IFMP in 2020, there was growing concern regarding the impact182

freezer trawlers were having on the ability of traditional wet boats (called Shoreside in this assessment)183

to access groundfish. Key Arrowtooth Flounder fishing grounds include waters near Brooks184

Peninsula, Cape St James, Rennell Sound, and Lax Kw’alaams. These waters are also key185

grounds for a number of other groundfish species. The Council of Lax Kw’alaams Band in particular186

have expressed concern about securing long term access to groundfish to support their local fish187

processing plant and had recently passed a resolution to ban freezer trawlers from fishing in their188

traditional territory around Prince Rupert. Furthermore, the North Coast Regional District and189

the Nuu-chah-nulth Tribal Council had written to DFO expressing concerns about freezer trawlers190

and the vessels’ effect on local groundfish access and processing capacity (DFO 2020).191
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Both the Sport Fishing Advisory Board and the Halibut Advisory Board (HAB) have raised concerns192

about the level of Halibut bycatch associated with the Arrowtooth Flounder fishery, and commercial193

Halibut harvesters have expressed concern about the impacts freezer trawlers have had on194

their access to Halibut grounds south of Cape St James. Discussions between Groundfish Trawl195

Advisory Board (GTAC) and Halibut Advisory Board (HAB) representatives took place in 2020 to196

discuss additional spatial closures in an effort to avoid gear conflicts and minimize bycatch (DFO197

2020).198

1.3.1. FISHERY MANAGEMENT IMPACTS ON CATCH AND REPORTING199

A test fishery was opened in 2005 to determine marketability and economic viability of Arrowtooth200

Flounder for industry. The areas of high CPUE in the east area of Dixon Entrance seen in Figure 2201

are mainly from this test fishery. The increased catch in 2005 can be seen in Figure 3, especially202

in the northern areas; 5ABCDE. However, due to rapid proteolysis of the flesh, the fishery was203

not profitable and a large drop in catch is evident after 2005 (Figure 3) when the test fishery204

ended abruptly.205

The increase in catch seen from 2010–2014 was due to freezer trawlers joining the fleet (Figure 4).206

The freezer trawlers quickly overtook the Shoreside fleet and caught most of the total catch for207

every year since 2013. There has been an overall decline in annual catches since 2017, with a208

particularly large decrease occurring in 2019 (Figure 3) and continuing through 2021. The large209

decrease is due to the quota reduction implemented by fisheries managers based on survey210

abundance index declines and reports of reduced availability of Arrowtooth Flounder on the211

fishing grounds (Section 1.3).212

Prior to the introduction of freezer trawlers, most of the historical catch of Arrowtooth Flounder213

is understood to have been discarded at sea in large quantities due to proteolysis of the flesh214

if catches were not landed and frozen quickly after capture. Before the introduction of 100% at-215

sea observer coverage in the British Columbia groundfish fleets in 1996, reporting of Arrowtooth216

Flounder discards in fishery logbooks was voluntary. Since Arrowtooth Flounder were not managed217

with quotas before 1996, there was little incentive for skippers to record discards accurately or218

at all. Therefore the quantity of discards in the pre-1996 period is highly uncertain and no catch219

reconstruction prior to 1996 could be made for this assessment.220

Any foreign or U.S. catches were taken outside Canadian management zones and were not221

accounted for in this assessment.222
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2. STOCK ASSESSMENT MODELLING

We applied a two-sex two-fleet statistical catch-at-age model in a Bayesian estimation framework223

to assess the coastwide stock of Arrowtooth Flounder. Analysis of the sex composition of the224

commercial and survey sample data indicated that the stock is composed of approximately225

0.79 females; see Appendix B, Table B.1. All models in this assessment, including the base226

model, bridging models, sensitivity models, and retrospective models, were run using 0.79 as227

the proportion of females in the stock. Bridging models 1 and 2, prior to the addition of data up to228

2021 used 0.70 for the proportion female, which is what was used in the 2015 assessment.229

The model was fit to commercial catch data from two fleets, six indices of abundance with associated230

coefficients of variation, and to age composition data from the commercial trawl fleets and four of231

the six surveys. Biological parameters used in the model, including growth, weight-at-age, and232

maturity schedules, were estimated independently for each sex (Appendix A) and input into the233

assessment model as fixed parameters that were assumed to remain constant over time.234

Reference points based on estimated equilibrium unfished spawning biomass, B0, were estimated235

(Section 3). A harvest decision table (Table 14) was created by projecting the assessment model236

one year into the future under a range of constant catch levels. For each level of catch, decision237

tables show the probability that projected spawning biomass in 2023 will be less than spawning238

biomass-based reference points, and the probability that 2023 harvest rate will be greater than239

harvest-rate-based reference points (Section 3). Reference points based on Maximum Sustainable240

Yield (MSY), including the spawning biomass (BMSY) and the annual harvest rate producing241

MSY (UMSY), were estimated but not included in the decision table as they are not being presented242

for advice. They were estimated to show that the FMSY (and UMSY) values are unreasonably243

high, due to selectivity being estimated greater than maturity, as described in Section 2.3.5.244

2.1. DATA INPUTS

2.1.1. Data Sources245

Data were extracted using the R package gfdata, which applies standard SQL routines to several246

databases and reconstructs the various time series accordingly. The databases accessed for this247

assessment were:248

1. GFBioSQL: Contains all modern biological sample data for surveys and commercial fisheries.249

This database includes most of the groundfish specimen data collected since the 1950s.250

2. PacHarvTrawl: Contains Canadian trawl landing data from 1996 to March 31, 2007.251

3. GFFOS: Contains Canadian trawl landings from April 1, 2007 to present. This database is252

essentially a copy of the Fisheries and Oceans Canada (DFO) Fishery Operations (FOS)253

database with a slightly different structure that makes it easier for our assessment needs.254

2.1.2. Catch Data255

Commercial fishing data are presented for the period February 21, 1996 to February 20, 2021.256

Coastwide landings and discards are shown in Table 1 and by fleet in Table 2. The current257

assessment fits a two-sex Bayesian age-structured model to catch, survey, and age-composition258

data from the years 1996 to 2021, for management areas 3CD (West Coast Vancouver Island),259

5AB (Queen Charlotte Sound), 5CD (Hecate Strait), and 5E (West Coast Haida Gwaii).260
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Prior to the introduction of freezer trawlers into the British Columbia groundfish trawl fleet in 2005,261

most of the historical catch of Arrowtooth Flounder is understood to have been discarded at262

sea in large quantities due to flesh proteolysis, as discussed above. In many cases entire tows263

were discarded, precluding the use of ratio estimators or other statistical methods of estimating264

unobserved discards. All catch data prior to the introduction of 100% at-sea observer coverage265

in 1996 were therefore omitted from this assessment, on the recommendation of our industry266

advisors and technical working group, and follows what was done in the 2015 assessment267

(Grandin and Forrest 2017).268

2.1.3. Abundance Indices269

Six fishery independent indices of abundance were used in this assessment:270

1. Queen Charlotte Sound Synoptic Survey271

2. Hecate Strait Multispecies Assemblage Survey272

3. Hecate Strait Synoptic Survey273

4. West Coast Vancouver Island Synoptic Survey274

5. West Coast Haida Gwaii Synoptic Survey (bridging only)275

6. Discard CPUE Index276

Queen Charlotte Sound Synoptic Survey277

The Queen Charlotte Sound Synoptic Survey has been conducted from July–August in 2003,278

2004, and in odd years starting in 2005. The survey area is divided into 2 km × 2 km blocks and279

each block is assigned one of four depth strata based on the average bottom depth in the block.280

The four depth strata for this survey are 50–125 m, 125–200 m, 200–330 m, and 330–500 m.281

Each year blocks are randomly selected within each depth strata. In addition, for the purposes of282

allocating blocks, the survey is divided into northern and southern spatial strata.283

Hecate Strait Multispecies Assemblage Survey284

A series of multi-species groundfish bottom trawl surveys were conducted in Hecate Strait in285

May–June of 1984, 1987, 1989, 1991, 1993, 1995, 1996, 1998, 2000, 2002, and 2003 (Westrheim286

et al. (1984); Fargo et al. (1984); Fargo et al. (1988); Wilson et al. (1991); Hand et al. (1994);287

Workman et al. (1996); Workman et al. (1997); Choromanski et al. (2002); Choromanski et al.288

(2005)). The present assessment only uses observations from 1996 until the survey ended in289

2003. The original design of this survey assigned fishing locations by 10 fathom depth intervals290

within a 10 nautical mile grid of Hecate Strait. The survey was post-stratifed using 10 fathom291

depth intervals for the entire survey area, thereby treating each depth interval as a single stratum.292

Despite attempts to apply post-sampling stratification, this approach had high survey variance293

(Sinclair et al. 2007). In 2004 the Hecate Strait Multispecies Assemblage Survey was discontinued294

in favour of the Hecate Strait Synoptic Survey (described below).295

Hecate Strait Synoptic Survey296

The Hecate Strait Synoptic Survey is part of a coordinated set of long-term surveys that together297

cover the continental shelf and upper slope of most of the British Columbia coast. The Queen298

Charlotte Sound Synoptic Survey and West Coast Vancouver Island Synoptic Survey described299

in this section are part of the same set of surveys. All the synoptic surveys follow a random300

depth stratifed design. The relative allocation of blocks among depth strata was determined301

by modelling the expected catches of groundfish and determining the target number of tows per302

stratum that would provide the most precise catch rate data for as many species as possible.303
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The Hecate Strait Synoptic Survey has been conducted from May—June in odd years starting in304

2005. The survey area is divided into 2 km × 2 km blocks and each block is assigned one of four305

depth strata based on the average bottom depth in the block. The four depth strata for this survey306

are 10–70 m, 70–130 m, 130–220 m, and 220–500 m. Each year blocks are randomly selected307

within each depth strata.308

West Coast Vancouver Island Synoptic Survey309

The West Coast Vancouver Island Synoptic Survey has been conducted from May—June in310

even years starting in 2004. The survey area is divided into 2 km × 2 km blocks and each block311

is assigned one of four depth strata based on the average bottom depth in the block. The four312

depth strata for this survey are 50—125 m, 125–200 m, 200–330 m, and 330–500 m. Each year313

blocks are randomly selected within each depth strata. In addition, for the purposes of allocating314

blocks, the survey is divided into northern and southern spatial strata.315

West Coast Haida Gwaii Synoptic Survey316

The West Coast Haida Gwaii Synoptic Survey has been conducted from August-September in317

even years starting in 2006. The survey area is divided into 2 km × 2 km blocks and each block318

is assigned one of four depth strata based on the average bottom depth in the block. The four319

depth strata for this survey are 180–330 m, 330–500 m, 500–800 m, and 800–1,300 m.320

Discard CPUE Index321

A standardized commercial CPUE index, as has been used in other recent DFO Pacific assessments,322

was not used due to the behaviour of the fishery. Arrowtooth Flounder are targeted on known323

grounds, and the location information is shared among fishermen, so there is a bias towards a324

high CPUE. Instead, a Discard CPUE Index was suggested by stakeholders as an approach325

to create an index of abundance that would span every year in the assessment and be less326

influenced by changes in targeting behaviour than a standard commercial CPUE index. The327

index was constructed using CPUE for a defined ‘fleet’ of vessels and only included tows in328

which 100% of Arrowtooth Flounder were discarded. See Appendix C for more details.329

Swept area analysis for Indices of abundance330

For all surveys, the swept area estimate of biomass in year y was obtained by summing the331

product of the CPUE and the area surveyed across the surveyed strata i:332

By =

k

Σ
i=1

CyiAi =

k

Σ
i=1

Byi (1)

where Cyi is the mean CPUE density (kg/km2) for species in stratum i, Ai is the area of stratum i,333

Byi is the biomass of Arrowtooth Flounder in stratum i for year y, and k is the number of strata.334

CPUE (Cyi) for Arrowtooth Flounder in stratum i for year y was calculated as a density in kg/km2
335

by:336

Cyi =
1

nyi

nyi

Σ
j=1

Wyi,j

Dyi,jwyi,j
(2)

where Wyi,j is the catch weight in kg for Arrowtooth Flounder in stratum i, year y, and tow j, Dyi,j337

is the distance travelled in km for tow j in stratum i and year y, wyi,j is the net opening in km by338

tow j, stratum i, and year y, and nyi is the number of tows in stratum i.339
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The variance of the survey biomass estimate Vy for Arrowtooth Flounder in year y is calculated in340

kg2 as follows:341

Vy =

k

Σ
i=1

σ2
yiA

2
i

nyi

=

k

Σ
i=1

Vyi (3)

where σ2
yi is the variance of the CPUE in kg2/km4 for year y in stratum i, Vyi is the variance of342

Arrowtooth Flounder in stratum i for year y, where σ2
yi was obtained from bootstrapped samples343

(see below).344

The CV for Arrowtooth Flounder for each year y was calculated as follows:345

CVy =
V

1/2
y

By
(4)

where CVy is the CV for year y.346

One thousand bootstrap replicates with replacement were constructed from the survey data347

to estimate bias-corrected 95% confidence regions for each survey year (Efron 1982). Mean348

survey biomass estimates obtained from Eq. 1 with CVs (Eq. 4) are presented for the fishery-349

independent indices in Table 4.350

We also included a set of geostatistical-model-standardized indices in our sensitivity analyses351

(Appendix D).352

2.1.4. Age Data353

Ages for the years 1996–2019 are included in this assessment from the two commercial fleets354

and three synoptic surveys. The samples were aged by the break-and-bake method, which355

involves placing a large number of otoliths in a tray, baking them in a specially designed oven,356

then breaking them to perform age reads. During this process, if the person ageing the otoliths357

finds one that is not baked enough, they will burn the otolith manually to give it the right contrast358

for age reading. This extra burning step makes this method equivalent to the traditional break-359

and-burn method in which the age-reader burns each otolith individually (S. Wischniowski, Sclerochronology360

Laboratory, Pacifc Biological Station, Pers. Comm.).361

Age composition data represented the whole coast for the following years:362

1. Freezer trawlers (Figure A.2), 2013–2019363

2. Shoreside (Figure A.2), 1996–2019364

3. Queen Charlotte Sound Synoptic Survey (Figure A.2), 2003–2019365

4. Hecate Strait Synoptic Survey (Figure A.2), 2005–2019366

5. West Coast Vancouver Island Synoptic Survey (Figure A.2), 2004–2018367

6. West Coast Haida Gwaii Synoptic Survey (Figure A.2), 2016–2018, (bridging models only)368

Age composition data were input to the assessment models as weighted proportions-at-age.369

Weighting was based on a stratifed scheme that adjusted for unequal sampling effort across370

depth strata and tow biomass density (surveys) or quarterly period within a year and tow catch371

weight (commercial). Details are given in Holt et al. (2016) (page 160) and the 2015 assessment372

(Grandin and Forrest 2017). The methods are coded into the gfplot package. The 2015 assessment373

used custom code as the gfplot package was not yet available.374
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Commercial ageing requests included randomly chosen samples from many vessels across both375

commercial fleets.376

2.1.5. Length data377

Length data from the freezer trawler and shoreside fleets and from the synoptic surveys are378

shown in Figure A.1. Survey lengths are shown by sex and commercial lengths are aggregated.379

Some of the commercial length histograms are bimodal illustrating the sexual dimorphism of this380

species.381

Females did not vary in length significantly between the two fleets, with both having an overall382

median of 52 cm. Males had a median of 45 cm for the Freezer trawler fleet and 43 cm for the383

Shoreside fleet. Females had a median of 54 cm for the Freezer trawler fleet and 52 cm for the384

Shoreside fleet.385

Females have been sampled more often than males in both fleets. This difference in sampling is386

due to the proportion of females in the population being higher than males. Appendix B describes387

in detail how the proportion female was calculated.388

2.1.6. Growth parameters389

Growth parameters were estimated outside the ISCAM framework. They were input into data390

files for the stock assessment model. Appendix A contains details including equations and the391

estimated growth parameter values for the base model in Table A.1.392

2.2. STATISTICAL CATCH-AT-AGE MODEL

2.2.1. Model Description393

A two-sex, Bayesian statistical catch-at-age model was applied to assess the coastwide stock394

status of Arrowtooth Flounder. The model is based on the Integrated Statistical Catch Age Model395

(ISCAM) framework, Martell et al. (2011). Full model details are provided in Appendix G.396

We define a base model with fixed and estimated parameters described in Table 5. A total of 147397

model parameters were estimated by the base model (Table 5 shows most of these). The model398

estimated time series of log recruitment anomalies and log fishing mortality rates; and time-399

invariant values of unfished recruitment, steepness of the Beverton-Holt stock-recruit relationship,400

natural mortality, average recruitment, and logistic selectivity parameters for the two commercial401

fisheries and the four synoptic surveys. Prior probability distributions for the base model are402

shown in Table 5 and Figure 33 and described in Section 2.2.2. Model sensitivity to fixed parameters403

and to assumed prior probability distributions are presented in Section 2.4.404

The model was conditioned on observed catch data (1996–2021), which were assumed to405

be known without error. The model was fit to four survey indices of abundance, the Discard406

CPUE index, and to age composition data from the two commercial fisheries, and three synoptic407

surveys. Biological parameters determining weight-at-age and maturity-at-age schedules were408

estimated independently (Appendix A) and input into the assessment model as fixed parameters409

that remained constant over time (Table A.1).410

Survey biomass indices were treated as relative abundance indices that are directly proportional411

to the survey vulnerable biomass at the beginning of each year. Observation errors in relative412

abundance indices were assumed to be log-normally distributed. The catchability parameter qk413

was estimated for each index k. Prior probability distributions for ln(qk) are described in Section 2.2.2.414
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Age-composition observations were assumed drawn from a Dirichlet-multinomial distribution. It415

was assumed ages were read without error.416

Selectivity-at-age for the trawl fisheries, four surveys, and Discard CPUE index was modelled417

using a two-parameter logistic function with asymptote at 1. Age-at-50%-vulnerability (âk) and418

the standard deviation of the logistic selectivity curve (γ̂k) for each gear k were estimated for the419

trawl fisheries and the three synoptic surveys. No age composition data were available for the420

Hecate Strait Multispecies Assemblage Survey and Discard CPUE Index so selectivity was fixed421

with âk = 9 and γ̂k = 0.5, similar to estimated values for the other gears. Additional sensitivity422

runs not included in this assessment document indicated that there was little model sensitivity to423

this assumption.424

Variance components of the model were partitioned into observation and process errors. The425

key parameter is the total variance (i.e., ϑ2, total precision). The total variance is partitioned426

into observation and process error components by the model parameter ρ, which represents427

the proportion of the total variance that is due to observation error (Punt and Butterworth 1999;428

Deriso et al. 2007). The total variance is partitioned into observation errors (σ) and process429

errors (τ ) using Eq. G.31 from Appendix G. The parameters ϑ2 and ρ were fixed in the current430

assessment (Table 5) at values that gave σ = 0.2 and τ = 0.8. See Section 2.4.1 for sensitivity431

analyses to this assumption. See Appendix G for further details on the treatment of variance in432

this assessment.433

2.2.2. Prior Probability Distributions434

Prior probability distributions for the base model are shown in Figure 33 and Table 5. Model435

sensitivities to assumed prior distributions are presented in Sections 2.4.1, 2.4.3, and 2.4.4.436

Uniform prior probability distributions were assumed for ln(R0), ln(R̄), ln(Rinit) and selectivity437

parameters (Table 5). A Beta distribution was assumed for the steepness (h) of the stock-recruit438

relationship, with shape parameters that resulted in a distribution with mean = 0.85 and CV =439

0.10 (Beta(α = 13.4, β = 0.1)). This prior was based on a literature review on steepness parameters440

for Pacific flatfish species done by Holt et al. (2016) and was used in the 2015 assessment for441

Arrowtooth Flounder. A review of steepness estimates for flatfish species by Maunder (2012)442

suggested that flatfish steepness using a Beverton-Holt stock-recruit relationship may be around443

0.94 (where h approaching 1.0 implies recruitment is independent of spawning biomass).444

A normal distribution was assumed for ln(M) for both sexes with mean = ln(0.20) and SD =445

1.22 for females and mean = ln(0.35) and SD = 1.22 for males (in log space). Holt et al. (2016)446

reviewed the literature and stock assessments and assumed a prior probability distribution for M447

with mean = 0.2 in their assessment of British Columbia Rock Sole (Lepidopsetta spp.). Shotwell448

et al. (2021) assumed a value of M = 0.2 for females and M = 0.35 for males in the assessment449

of Gulf of Alaska Arrowtooth Flounder; the same was done for the Bering Sea Aleutian Islands450

stock (Spies and W. 2019).451

Normal prior probability distributions were assumed for the log survey catchability parameters452

ln(qk) for each survey k. Normal distributions with mean = ln(0.5) and SD = 1 in log space were453

selected because the survey estimates of biomass were derived from swept area analysis (Eqs. 1, 2,454

and 3) and could therefore reasonably be expected to be within 1–2 orders of magnitude of unity.455

A large standard deviation was used to reflect ignorance of the scale of the swept area analysis456

compared with the true biomass.457
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2.2.3. Fishery Reference Points458

The DFO Fishery Decision-Making Framework Incorporating the Precautionary Approach (PA)459

policy (DFO 2009) requires stock status to be characterized using three reference points:460

1. A Reference Removal Rate461

2. An Upper Stock Reference point (USR)462

3. A Limit Reference Point (LRP)463

Provisional values of USR = 0.8BMSY and LRP = 0.4BMSY are suggested in the absence of464

stock-specific reference points. The framework suggests a limit reference removal rate of FMSY.465

Therefore, we refer to the reference removal rate as the limit removal rate (LRR) throughout this466

document.467

A harvest control rule based on these reference points that is coincident with the choice of LRP,468

USR, and LRR would apply a linear reduction in fishing mortality as the stock falls below the469

USR, and would cease fishing when the stock reaches the LRP (e.g., Figure 6 in Grandin and470

Forrest 2017).471

The FMSY (and annual harvest rate UMSY) are estimated to be very large in this model due to472

selectivity being greater than maturity, as described in Section 2.3.5. We therefore present B0-473

based reference points for Arrowtooth Flounder that are less reliant on estimated selectivity. We474

suggest an USR = 0.4B0 and a LRP = 0.2B0. These thresholds are consistent with biomass475

targets and limits in place in other jusrisdictions including Australia (Smith et al. 2007) and476

the U.S.A. (V. R. Restrepo 1998). They were also used in the last assessment for Arrowtooth477

Flounder in British Columbia (Grandin and Forrest 2017).478

2.3. RESULTS

2.3.1. Bridge Models479

A set of bridging models was run to determine the effects of incremental model modifications480

while moving from the single-sex, single-fleet 2015 assessment model to the split-sex, two-fleet481

model used in this assessment.482

The base model from the 2015 assessment (Grandin and Forrest 2017) was run with the newest483

version of the ISCAM (Martell 2011) code and the original data files. The parameter estimates,484

reference points, estimated trajectories, index fits, and age composition fits were determined to485

be identical. The 2015 model was a female-only catch-at-age model with 4 indices of abundance,486

which included the three Synoptic surveys and the Hecate Strait Multispecies assemblage487

survey.488

The Technical Working Group (TWG) agreed that the model should be split-sex, based on the489

sexual dimorphism observed in the age and length data for this species, and there being 8 more490

years of data since the 2015 assessment, which allowed for a larger number of age proportion491

specimens for each sex.492

All bridge models were run using MCMC (Markov chain Monte Carlo) sampling with a chain493

length of 10,000,000, retaining every 5,000th sample, giving 2,000 samples, which were then494

burned in by 1,000 giving a total of 1,000 samples used for inference.495

Each model in this list is based on the previous one with only one change made so incremental496

changes can be tracked.497

1. 2015 Base model (Grandin and Forrest 2017).498
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2. Extracted the data for the 2015 model using the gfdata/gfplot packages, which have been499

used in several assessments and in the gfsynopsis report (Anderson et al. 2019; DFO500

2022).501

3. Using the same data extraction methods as in the previous step, appended data up to and502

including 2021. The proportion female was changed in this step from 0.70 to 0.79.503

4. Added the West Coast Haida Gwaii Synoptic Survey index and age composition data. This504

was tried to determine how the additional survey years since 2015 contributed to the model505

fit.506

5. Switched the age composition likelihood from multinomial to the saturating parameterization507

of the Dirichlet-multinomial (Thorson et al. 2016). We did this because in more complex508

model configurations, the multivariate normal logistic had convergence issues and the509

standard multinomial would have required manually re-weighting the age proportions for510

each model run (Francis 2016).511

6. Changed the model from one to two commercial fleets. This splits the commercial trawl512

catch into catch from Freezer Trawlers and Shoreside fleets. This was done on the recommendation513

of the Technical Working Group (TWG) since the large freezer trawlers may fish differently514

and have different selectivity than the shoreside vessels.515

7. Added a Discard CPUE index. This was suggested by the TWG and is an index of catch516

per unit effort for vessels that were not fishing for Arrowtooth Flounder and therefore were517

discarding all that they caught incidentally. The selectivity could not be estimated for this518

index since there are no age composition data for it, so its selectivity was fixed to values519

representative of other estimated selectivities from other gears. See Appendix C for details520

on how this index was generated.521

8. Converted the model from female-only to a split-sex model. In this model, the two natural522

mortality parameters for male and female were estimated.523

9. Changed fishing year to start on February 21 (vs. January 1), which is the date currently524

used by Fisheries Management for the fishing year.525

10. Removed the West Coast Haida Gwaii Synoptic Survey index and age comps. The survey526

was not contributing meaningfully to the assessment and the estimated selectivities were527

not viable due to too few samples. Its removal was suggested by the TWG.528

11. Fixed both male and female natural mortality parameters. The estimated values were quite529

low for this species based on assessments in neighbouring jurisdictions (Spies et al. 2017,530

2019; Shotwell et al. 2020, 2021).531

Bridge models group 1 (models 1-4)532

Figure 26 shows the absolute and relative spawning biomass for the first four bridging models in533

the list above (list items 1–4). Changing the data extraction method for all data up to 2014 had534

minimal effect, with only a small difference in 2015 absolute biomass and a very small difference535

in 2015 relative biomass. Small changes in data are mainly due to changes in survey indices,536

which are caused by survey blocks being removed from the entire survey series. These blocks537

were found to be unfishable or inappropriate for the index in the surveys since 2014 and were538

removed from the entire series, changing the historical indices slightly from those included in the539

2015 assessment.540

Adding the data from 2015–2021 caused a large change in the biomass trajectories (Figure 26).541

The biomass began dropping more rapidly starting in 2002, with a relatively steep drop from542
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2010–2020. This decline in the biomass is caused mainly by the declining indices of abundance543

in that time period. From 2021–2022 the model shows the beginnings of an upward trend. Credible544

intervals (CIs) became much narrower with the addition of the 2015–2021 data. However, the545

estimated parameters (except steepness) are all moderately to highly correlated (Figure 27). All546

the bridging models that follow have high correlation between parameters, except for the last one547

in which the natural mortalities for both sexes were fixed.548

Adding the West Coast Haida Gwaii Synoptic Survey age compositions and index into the model549

had a scaling effect in the earlier part of the trajectory, but both absolute and relative biomasses550

were nearly identical for 2022 (Figure 26).551

Bridge models group 2 (models 5-8)552

Figure 28 shows the absolute and relative spawning biomass for the second group of four bridging553

models (list items 5–8). Changing the age data weighting to the saturated Dirichlet multinomial554

(DM) (Thorson et al. 2016), caused a drop in absolute biomass and B0. The B0 median for the555

first model in Figure 28, when compared to the B0 median for the last model in Figure 26 shows556

a difference of 31 thousand t (from 204 to 173 thousand t). However, the biomass estimates557

were also scaled down, so the 2022 relative biomass only dropped a small amount (0.44 to558

0.39).559

For the next bridging model, the commercial trawl fishery was split into two fleets: the Freezer560

trawlers and Shoreside fleets. This changed the model internals but had negligible effect on the561

biomass and relative biomass trajectories (Figure 28).562

Adding the Discard CPUE Index (DCPUE) to the model had almost no effect on the absolute563

biomass and B0 estimates. It did, however, reduce the credible interval (Figure 28) on the absolute564

spawning biomass series.565

The next step in the bridging was to convert the model into a split-sex model. All previous bridge566

models were female-only. This step involved significant modifications to the ISCAM model code.567

This change caused a drop in final-year biomass and relative biomass, and some overall scaling568

up of the historical relative biomass trajectory (Figure 28). The selectivity age-at-50% estimates569

(â) for females in the West Coast Haida Gwaii Synoptic Survey for this model were unreasonable570

at 908,360 (46–21,893,582,500) years.571

Bridge models group 3 (models 9–13)572

The biomass plots for the final group of bridging models (list items 9-13) can be found in Figure 29.573

For the first of these models, the fishing year was changed from what it was in the 2015 assessment,574

January 1–December 31 to February 21–February 20. This change was made to reflect the575

start date for the fishery each year in Canada (February 21). The effect of this is the median576

B0 increasing a small amount from 156 to 161 thousand t, and the 2022 relative biomass being577

reduced from 0.32 to 0.30. The credible interval of the absolute biomass is reduced by a large578

amount with this change in fishery timing from 37–70 (width 33) to 49–50 (width 1). The credible579

interval on the relative biomass is also much smaller than the previous model in group 2; 0.22–580

0.46 (width 0.24) for the previous model vs. 0.30–0.31 (width 0.01) for the one with the fishery581

timing change (Figure 29). This tiny credibility interval indicates that the parameters are highly582

auto-correlated, which can be seen in Figures 30 and 31.583

The West Coast Haida Gwaii Synoptic Survey was removed (it was also removed in the 2015584

assessment) as it had little effect on the biomass and poor selectivity estimates (Figure 29).585

The result was a scaled-down biomass trajectory, with a similar relative biomass to the previous586

model.587
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The natural mortality estimates from the model at this point were 0.19 for males and 0.17 for588

females with credible intervals of 0.19–0.20 (width 0.01) and 0.16–0.18 (width 0.01) respectively.589

The female estimate of natural mortality was close to the fixed value for females in assessments590

done in neighbouring jurisdictions (0.20), but the male estimate was much lower than what was591

used in neighboring stocks (0.35). Based on the estimated natural mortality values and the592

high correlation between estimated parameters for this model (Figure 32), we decided to fix593

the natural mortalities at the same values as the Gulf of Alaska and Bering Sea and Aleutian594

Islands assessments (Spies et al. 2019; Spies and W. 2019; Shotwell et al. 2020, 2021); 0.20 for595

females and 0.35 for males.596

2.3.2. Model diagnostics597

The joint posterior distribution was numerically approximated using the Metropolis Hastings598

Markov Chain Monte Carlo (MCMC) sampling algorithm in AD Model Builder (Fournier et al.599

2012). For the base model and all sensitivity cases, posterior samples were drawn every 5,000600

iterations from a chain of length 10,000,000, resulting in 2,000 posterior samples (of which the601

first 1,000 were dropped as burn-in). Convergence was diagnosed using visual inspection of the602

traceplots (Figures 34 and 36) and examination of autocorrelation in posterior chains (Figures 35603

and 37). Autocorrelation was low at lag values up to 1,000 for all parameters after thinning.604

Correlation between parameters appeared low overall, with only some moderate correlations605

between catchability parameters and R̄ (Figures 38 and 39). There was no strong evidence for606

lack of convergence in the base model.607

2.3.3. Fits to Data608

The model generally fit the indices of abundance well (Figure 11). The West Coast Vancouver609

Island Synoptic Survey has a large fluctuation high and low for successive years of the survey610

from 2008–2016, which is difficult for the model to fit. The Queen Charlotte Sound Synoptic611

Survey was difficult to fit, due to fluctuations from high to low abundance from year to year early612

in the time series, and the lack of the recent drop in biomass seen in all other data sources.613

A sensitivity was done to attempt a better fit on this index, while retaining the good fits on the614

others (Section 2.4.6).615

The Discard CPUE Index fit particularly well and is the only index to have a value for every616

year in the assessment. Standardized residuals show mostly even distribution of positive and617

negative residuals, with evidence of some autocorrelation in the Discard CPUE Index residuals618

(Figure 12). For all indices, the log index residuals (Figure 12) were good, with all being in the [-2,619

2] range.620

Fits to age compositions for each gear, and log standardized residuals are shown in Figures 13–621

23. Fits were reasonable and there were no strong patterns in the residuals.622

2.3.4. Parameter Estimates623

Prior and posterior probability distributions of estimated parameters are shown in Figure 33. The624

median and 95% CI (2.5th and 97.5th percentile) posterior parameter estimates are shown in625

Table 6. With the exception of steepness, the posterior estimates did not appear to be strongly626

influenced by the prior probability distributions. The posterior probability distribution for steepness,627

h, was similar to the prior distribution, suggesting that there was little information about this628

parameter in the data. Sensitivity to the assumed prior for steepness is tested in Section 2.4.2.629
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Normal prior probability distributions were used for the log catchability parameters ln(qk) for the630

indices of abundance (Figure 33). Posterior estimates tended to overlap with the left-hand tail of631

the prior distributions for each index. Sensitivity analyses (discussed in Section 2.4) indicated632

that posterior estimates of catchability were sensitive to the mean and standard deviation of the633

prior distribution.634

2.3.5. Selectivity635

Selectivity-at-age was estimated for the two fisheries and the synoptic surveys (Figure 24). The636

Discard CPUE Index and Hecate Strait Multispecies Assemblage Survey fixed selectivities are637

also shown in Figure 24.638

Posterior estimates of age-at-50%-harvest (âk) and the standard deviation in the logistic selectivity639

ogive (γ̂k) are provided in Table 6. The median posterior estimates of age-at-50%-harvest were640

higher for females than males for all gears except for the Hecate Strait Synoptic Survey, which641

had a higher estimate for males. The estimates of standard deviation were similar between sexes642

by gear.643

These estimates were further to the right than expected, but were consistent with the available644

age composition data (Figure A.2), which indicate fewer observations of younger fish, especially645

in the latter part of the timeseries. Numerous tests of alternative model configurations did not646

result in a lower estimate of age-at-50%-harvest for any gear/sex combination.647

Arrowtooth Flounder are thought to mature at around 5.6 years of age for females and 4.1 years648

of age for males (Figure A.5, Table A.1). Therefore, it appears that individuals have several649

opportunities to spawn before they become vulnerable to the fishery. This in turn resulted in650

estimates of maximum sustainable harvest rate UMSY approaching 1 (discussed in Section 2.3.6),651

implying that under theoretical equilibrium conditions, all of the vulnerable (i.e., fully selected)652

biomass could be harvested because the population could be sustained by younger spawners653

that are invulnerable to the fishery. This is a theoretical condition subject to the assumptions in654

the stock assessment model and the data limitations therein. We strongly advise against this as655

a harvest strategy and suggest that the age-at-50% selectivity in the commercial trawl fleets are656

a primary axis of uncertainty in this stock assessment.657

2.3.6. Fishery Reference Points658

Posterior estimates of fishery reference points from the base model are provided in Table 7 and659

Figure 25. The posterior unfished spawning biomass (SB0) (abbreviated to B0 herein) had a660

median 180,380 t and 95% CI ranging from 130,662 t to 257,409 t (Table 7). Posterior 95% CIs661

for the LRP 0.2B0 and USR 0.4B0 are also provided in Table 7.662

Reference points based on maximum sustainable yield MSY were strongly impacted by estimates663

of selectivity in the trawl fisheries described in the previous section. Because the selectivity664

ogives were estimated to the right of the maturity ogive, the median estimates of FMSY were665

1.31 for the Freezer trawler fleet and 4.04 for the Shoreside fleet (Table 7). The CI on these666

values is large, 0.34-3.73 for the Freezer trawlers fleet and 0.86-14.19 for the Shoreside fleet.667

These instantaneous fishing mortalities convert to an annual harvest rate approaching 1 for the668

Shoreside fleet (Figure 25), through the equation UMSY = 1 − eFMSY , implying that all of the669

vulnerable biomass (i.e., the biomass that is selected by the fishing gear) could be harvested670

because the population can be sustained by the spawning biomass that is invulnerable to the671

fishery (i.e., fish that are between 5.6 and 8.6 years for females and 4.1 and 8.4 for males). The672

relationship between age at maturity and age at first harvest and its effect on fishery reference673
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points was discussed by Myers and Mertz (1998), who described a fishing strategy where overfishing674

could be avoided by allowing all fish to spawn before they were available to be caught. Froese675

(2004) also discusses reduction in risks of overfishing by allowing fish to spawn before they are676

caught.677

It is important to understand the distinction between vulnerable biomass and spawning biomass.678

The fishery reference points FMSY and UMSY refer to catch of the vulnerable biomass V Bt, which679

is determined by the selectivity function680

V Bt,k =Σ
a

Na,twa,tva,t,k, (5)

where a is age, t is year, k is the trawl fishery (Freezer trawlers or Shoreside), N is the population681

number, w is the average weight-at-age, and v is the vulnerability-at-age in the trawl fisheries682

(i.e., selectivity).683

When the selectivity ogive is located to the right of the maturity ogive, this means that a larger684

proportion of the total population is mature than vulnerable to the fishery (Figure 8). A comparison685

between vulnerable biomass and spawning biomass is provided in Section 2.3.7.686

The median posterior estimate of BMSY (and 95% CI), conditional on estimated trawl selectivities687

and resulting FMSY values, was 31,722 t (17,870–59,686) (Table 7). Posterior CIs for the default688

LRP 0.4BMSY and USR 0.8BMSY are also provided in Table 7. The B0-based LRP and USR were689

approximately four times as large as the BMSY-based reference points. I.e., B0-based reference690

points were more precautionary than the BMSY-based reference points (Table 7).691

2.3.7. Biomass692

The base model estimates the spawning biomass to have been on a decreasing trajectory since693

2012 (Figure 5, Table 8). The posterior median (and 95% CI) spawning biomass in 2022 is694

projected to be 67,770 t (54,995–85,383) (Table 7). The median projected beginning-of-year695

2022 spawning biomass, which incorporates fishing mortality arising from the observed 2021696

catch, is considerably higher than median estimates of both the default USR of 0.8BMSY and the697

default LRP of 0.4BMSY (Figure 5, Table 7). The 2022 spawning biomass was projected to be698

slightly below the USR 0.4B0 and above the LRP 0.2B0 (Figure 7, Table 7).699

For comparison, posterior estimates of vulnerable biomass and spawning biomass are shown700

together in Figure 8. The two estimated vulnerable biomasses are considerably smaller than701

the spawning biomass, due to the relatively early age at maturity compared to the estimated702

age-at-50%-harvest, discussed in Sections 2.2.3 and 2.3.6.703

2.3.8. Recruitment704

Median posterior estimates of age-1 recruits are shown in Figure 9 and Table 10. The 95% CIs705

are large around the estimates of 2020 and 2021 recruitment. This is expected since there is706

no information in the data about the strength of this year class (also seen in other assessments707

such as Figure 28 of Edwards et al. 2022).708

Projected recruitment anomalies for 2021 and 2022 were drawn randomly from a normal distribution,709

N(0, τ2). For most of the time series prior to 2008, recruitment was estimated to fluctuate around710

the long-term average, with little variation around R0. However, since 2009, annual recruitment711

has been below average.712
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2.3.9. Fishing mortality713

Median posterior estimates of fishing mortality are shown in Figure 10 and Table 11. The median714

posterior estimate of fishing mortality is estimated to have peaked in 2005 in the Shoreside715

fishery at 0.315 (0.255–0.382) as a result of a test fishery described in Section 1.3.1. Fishing716

mortality rates converted to annual harvest rates can be found in Table 12.717

2.3.10. Relative spawning biomass718

Median posterior estimates of relative spawning biomass Bt/B0 are shown in Figure 7. The719

size of the 95% CI is amplified when compared to the absolute spawning biomass due to large720

uncertainty in the estimate of B0 (Figure 6, Table 7). The median posterior projected estimate of721

2022 relative biomass is 0.373 (0.261–0.531) (Figure 7, Table 9).722

2.4. SENSITIVITY ANALYSES

We tested sensitivity of the model outputs as follows:723

1. Decrease σ from 0.2 to 0.135 (changes ϑ2 and ρ) and estimate ϑ2
724

2. Increase initial value of τ from 0.8 to 1.0 (changes ϑ2 and ρ) and estimate ϑ2
725

3. Decrease initial value of τ from 0.8 to 0.6 (changes ϑ2 and ρ) and estimate ϑ2
726

4. Decrease mean of h prior from 0.85 to 0.72727

5. Estimate Mfemale with a narrow prior (SD = 0.2)728

6. Estimate Mfemale with a broad prior (SD = 1.6)729

7. Estimate Mmale with a narrow prior (SD = 0.2)730

8. Estimate Mmale with a broad prior (SD = 1.6)731

9. Increase mean of priors for catchabilities from 0.5 to 1 (qk for all gears k)732

10. Broader catchability priors, from SD = 1 to 1.5 (qk for all gears k)733

11. Selectivity curves equal maturity ogive for all gears734

12. Geostatistical model-based survey indices (Section D)735

13. Estimate time-varying selectivity for the Queen Charlotte Sound Synoptic Survey, to try to736

improve the survey index fit737

This list of sensitivity scenarios with more details is provided in Table 13. Base model parameter738

settings are provided in Table 5. All sensitivity models were run using MCMC with a chain length739

of 10,000,000, a sample frequency of 5,000, giving 2,000 samples, which were then burned in by740

1,000 giving a total of 1,000 samples retained for inference.741

2.4.1. Decreasing σ and adjusting τ742

ISCAM uses an error parameterization which includes two parameters, ϑ2 and ρ. They represent743

the total variance and the proportion of total variance associated with observation errors, respectively744

(Martell 2011). Observation error SD (σ) and process error SD (τ ) cannot be estimated directly,745

instead there is a calculation done to translate those values to and from ϑ2 and ρ (Appendix G,746

Eq. G.31). The values of σ and τ were fixed in the base model (Grandin and Forrest 2017) at 0.2747

and 0.8 respectively. By calculation, ϑ2 and ρ were fixed at 1.47 and 0.0588.748
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Reducing the observation error by decreasing σ from 0.2 to 0.135 and estimating ϑ2 increased749

the initial value of ϑ2 from 1.47 to 1.52 while approximately halving ρ from 0.059 to 0.028. The750

median and 95% CI of the posterior for ϑ2 was 0.37 (0.28–0.48). There was little effect on the751

absolute biomass trajectory (Figure 40), but the estimate of B0 was increased from 180,000, to752

445,000 t (Figure 40). The increase in the B0 estimate caused a scaling downward of the relative753

biomass trajectory (Figure 41). There were no substantial changes to the index fits, age fits, or754

selectivities.755

Setting the initial value for τ to 1.0 had little effect on absolute biomass. For this value of τ , the756

initial values of ϑ2 and ρ were 0.96 and 0.038 respectively (Appendix G, Eq. G.31). The estimate757

for ϑ2 was 0.49 (0.37–0.64).758

Setting the initial value for τ to 0.6 also had little effect on absolute biomass. For this value of759

τ , the initial values of ϑ2 and ρ were 2.49 and 0.100 respectively. The estimate for ϑ2 was 1.16760

(0.84–1.55).761

The estimates of B0 were increased for both of these models when compared to the base model,762

which resulted in scaling down of the relative biomass trajectory (Figure 41). The increase of763

B0 was much greater, and had a larger CI for the τ = 1.0 model than the τ = 0.6 model (370764

(200–581) vs. 205.88 (136.52–334.99)) thousand tonnes.765

2.4.2. Decreasing the mean of the steepness prior766

Decreasing the steepness prior mean from 0.85 to 0.72 and changing the prior SD from 0.10767

to 0.15 produced little change in both absolute biomass and B0 (Figure 40), despite having a768

different posterior (Figure 42, compare to base model Figure 33). The prior for h is very influential769

on the posterior, but the value of h does not have a large effect on the absolute or relative biomass770

(Figure 41).771

2.4.3. Modifying priors on Mfemale and Mmale772

In the base model, the natural mortality parameters Mfemale and Mmale are fixed to 0.20 and773

0.35 respectively. Four sensitivity models were run, to estimate each M parameter with broad774

and narrow prior SDs. Figure 43 shows the absolute biomass trajectories for these models.775

The relative spawning biomass trajectories are shown in Figure 44. Estimating Mfemale with776

narrow and broad priors produced estimates for Mfemale of 0.26 (0.23–0.29) and 0.27 (0.24–0.30)777

respectively. Mmale remained fixed for those models, at 0.35. Figure 43 shows that the model778

is sensitive to the female natural mortality parameter, as both absolute biomass trajectories779

and B0 estimates are inflated. The estimates are quite different from the fixed value of 0.20,780

causing this scaling effect. If the female mortality is higher, the model must adjust the starting781

point (B0) higher in order to fit all parameters including the indices with the drop in biomass in782

2019 (Figure 11).783

The sensitivity models that estimate Mmale with narrow and broad priors produced estimates784

of 0.25 (0.21–0.28) and 0.24 (0.20–0.27) respectively. These estimates were also substantially785

different than the fixed values of the parameter (0.35). However, males only make up 21% of786

the spawning stock biomass and estimated male selectivity is generally farther to the right of787

maturity than females (Figure 24). This implies that males removed from the stock will have lower788

overall impact to the stock biomass, since there are not as many older male fish in the stock to789

be caught, and the selectivity is higher on those fewer fish. The lack of older males can be seen790

in the length and age data (Figures A.1 and A.2).791
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This model is sensitive to natural mortality values whether fixed or estimated. The base model792

uses fixed values as used by several nearby jurisdictions (Spies et al. 2017, 2019; Spies and W.793

2019; Shotwell et al. 2020, 2021).794

2.4.4. Modifying catchability priors795

The catchability parameters are ln(qk) where k is the gear, one for each trawl fleet and survey796

index (Freezer trawlers, Shoreside, QCS Synoptic, HS Multi, HS Synoptic, WCVI Synoptic,797

Discard CPUE). These parameters have an associated normal prior with a log mean and SD798

set in the ISCAM control files. In the base model those are ln(0.5) and 1.0, respectively.799

Two sensitivity models were run to test the influence of the priors for ln(qk). In the first, the800

means for all gears were increased from ln(0.5) to ln(1.0), and the SD remained at 1.0. In the801

second, the prior was broadened by setting the SD for all the gears to 1.0. The means for that802

model remained at ln(0.5).803

The absolute and relative biomass was almost identical to the base model for these models804

(Figures 45 and 46). The catchability estimates were also almost identical between these models805

and the base model (Figure 47).806

2.4.5. Setting selectivities equal to maturity807

This sensitivity came about in the 2015 assessment cycle, where it was found that the estimated808

selectivity curves were all to the right of the maturity ogive (Figure 17, Grandin and Forrest809

2017). This caused the value of FMSY to be very large and essentially give the advice that an810

unlimited amount of catch could be taken without affecting the stock. We repeat it here, as the811

same situation has arisen with the current base model and to compare this model with the single812

sex model from the 2015 assessment.813

For this model structure, the absolute biomass and B0 estimates are much larger than for the814

base model (Figure 48). The median of the posterior for B0 was estimated to be 317,000 t with a815

broad CI of 203–517 (width 314) thousand t. For comparison, the base model had a B0 estimate816

of 180,000 t with a CI of 131–257 (width 126) thousand t. The absolute biomass trajectory is also817

high, so the relative biomass is higher than the base model (Figure 49). The index fits all reflect818

this, as they all show a one-way trip downwards (Figure 51).819

The vulnerable biomass for this model is substantially higher than for the base model (Figure 50),820

and exactly equal for the two fleets (one is overlapping the other and we cannnot see it in the821

figure). This is due to selectivity being exactly the same for both fleets, not because they are822

equal to the maturity. The ratio of the sum of the two fleets’ vulnerable biomasses to the spawning823

biomass is 0.25. For the base model, this ratio is 0.15. Moving the selectivity to the left increases824

the vulnerable biomass relative to the spawning biomass.825

2.4.6. Using TV selectivity for the Queen Charlotte Sound Synoptic Survey826

In an attempt to improve the fit of the Queen Charlotte Sound Synoptic Survey index (Figure 11),827

we implemented time-varying selectivity in ISCAM and ran the model with the Queen Charlotte828

Sound Synoptic Survey having three blocks of selectivity, 2003–2010, 2011–2016, and 2017–829

2021. We tried many combinations of both number of selectivity blocks and range of each block830

and this particular combination fit the data the best.831

The absolute and relative biomasss trajectories both show a lower value in 2022 than the base832

model (Figures 48 and 49). The index fit was better overall than for the base model, especially833
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in the latter part of the series (Figure 51). The improved fit to the QCS index was the goal of this834

model run but came at the expense of poor estimates of selectivity. The selectivity estimates835

for the three-year blocks can be seen in Figure 52. The male selectivity for the early years (left836

panel) is far to the right, much further than the time-invariant selectivities in the base model837

(Figure 24). The other two time periods have even more unreasonable estimates of selectivity,838

making this model unusable for any form of advice.839

There was also some autocorrelation in the MCMC samples for the Queen Charlotte Sound840

Synoptic Survey selectivity parameters in this model (Figure 53) and the trace plots for those841

parameters are not adequate for valid inference (Figure 54).842

2.4.7. Using survey indices calculated using geostatistical modelling843

This sensitivity case involved replacing the index data for the three synoptic surveys: (Queen844

Charlotte Sound Synoptic Survey, Hecate Strait Synoptic Survey, and West Coast Vancouver845

Island Synoptic Survey). These data are calculated using a standard design-based estimator in846

the base model. Here, they were replaced with geostatistical-based indices (Appendix D). Both847

absolute and relative biomass are similar to the base model, with a slightly higher estimate of B0848

and a slightly higher absolute biomass trajectory (Figures 55 and 56).849

The index fit is shown in Figure 57. The fit to the geostatistical-based index is approximately850

visually equivalent to the fit to the index in the base model but they are not shown on the same851

plot together due to the base indices being different.852

2.5. RETROSPECTIVE ANALYSES

The base model was tested for retrospective patterns. This was done by successively removing853

all catch, age, and index data for 1 year from the end of the time series in the data files and854

refitting the model. We attempted to run the retrospective model back 10 years, but only the855

first 8 years would converge. It is likely that attempting to remove too much data led to too few856

data sources for this split-sex, two-fleet model. This is the reason the 2015 assessment was857

parameterized as a single-sex model.858

All retrospective models were run using MCMC with a chain length of 10,000,000, a sample859

frequency of 5,000, giving 2,000 samples, which were then burned in by 1,000 giving a total of860

1,000 samples retained for inference. This was the same as all other models in this assessment.861

Figure 58 shows the absolute biomass for the base model compared with the retrospective862

models. Figure 59 Following the subtraction of years by looking at the trajectories, we see that863

the -4 years model (ending in 2018) follows a different path than the years following (2019–864

present). This is due to the large drop in biomass seen in 2019 in the West Coast Vancouver865

Island Synoptic Survey, Hecate Strait Synoptic Survey, and Discard CPUE Index (Figure 11).866

The model is highly sensitive to these drops in the indices, all of which occur in the same year.867

If this assessment had taken place prior to 2019 with this model, the outcome would have been868

notably different than it is now.869

The B0 estimates are also segregated into two distinct groups by the -4 year model, with those870

from 2019–present being lower than those prior to 2019. When the absolute trajectories are871

divided by these B0 values we can inspect the relative biomass trends (Figure 60). The high872

B0 estimates for the models prior to 2019 force the relative biomass downwards giving the873

impression of a more depleted stock in earlier years when compared to the more recent models.874
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Comparing recruitment estimates (Figures 61 and 62 for a closer view), most appear similar875

between models; however, there is an obvious outlier—the 2014 recruitment for the 2014 model.876

This can also be seen in in Figure 21 of the 2015 assessment. The 2014 cohort was highly877

uncertain at that time with the data that was available, even with the single-sex model. The R0878

estimates follow the same grouping seen in the absolute biomass figure.879

There is a decrease in fishing mortality for the models prior to 2019 (Figure 63), which corresponds880

to the increasing biomass trend in those models.881

The fits to the indices of abundance (Figure 64) show a clear divergence for the models prior to882

2019. The log standardized residuals (Figure 65) show that indices for those models fit neither883

better nor worse overall than the post-2019 models.884

3. RECOMMENDATIONS AND YIELD OPTIONS

3.1. DECISION TABLES

3.1.1. Base Model885

Performance measures were calculated over a sequence of alternative 2021 projected catch886

levels and are based on one-year projections to 2022. Projected, bias-corrected log recruitment887

anomalies in 2021 and 2022 were drawn randomly from a normal distribution, N(0, τ2).888

Posterior estimates of reference points and benchmarks are provided in Table 7. A decision889

table is presented showing predicted probabilities of undesirable states under alternative 2022890

projected catch levels (Table 14). An undesirable biomass-based performance measure is defined891

to occur when the 2023 projected spawning biomass is below the reference point or benchmark,892

i.e., the ratio B2023/BReferencePoint < 1. An undesirable fishing mortality-based performance893

measure is defined to occur when projected 2022 fishing mortality is above the reference point,894

i.e., F2022/FReferencePoint > 1. Probabilities in the decision tables are measured as the proportion895

of posterior samples that meet the above criteria (i.e., proportion of posterior samples < 1 for896

biomass-based performance measures; and proportion of posterior samples > 1 for fishing897

mortality-based performance measures).898

The base model decision table is presented in Table 14. Alternative 2022 catch levels are presented899

from 0 t to 50,000 t. Catches are shown in 2,000 t increments from zero to 10,000 t; then in900

1,000 t increments between 10,000 t and 20,000 t; and then in 2,000 t increments from 22,000901

t to 30,000 t. A catch level of 50,000 t is also given for reference purposes as it was included in902

the last assessment (Grandin and Forrest 2017).903

The model-predicted probability of the 2023 spawning biomass being below the 2022 spawning904

biomass ranged from 0.007 under zero 2022 catch to 0.978 under 10,000 t of catch, which is905

double the current total TAC. At 50,000 t, the probability is 1.000. The TAC that is closest to 0.5906

probability of the biomass declining from 2022 to 2023 (while still being below 0.5) is 2,000 t, at a907

probability of 0.189.908

The probability of being below the USR of 0.4B0 was from 0.491 to 1 over the range of catch909

levels considered; the probability of being below the LRP of 0.2B0 for the same catch range was910

from 0 to 0.953.911

All catch levels (except zero) had a probability of greater than 0.5 of the 2023 biomass being912

under the 0.4B0 reference point.913
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3.2. SOURCES OF UNCERTAINTY AND FUTURE RESEARCH

As with all stock assessments, there are two major types of uncertainty in the advice presented914

in this document:915

1. Uncertainty in the estimates of model parameters within the assessment916

2. Structural uncertainty arising from processes and data that were not included in the assessment917

The first type, parameter uncertainty, is presented in terms of posterior credible intervals for918

parameters and state variables such as biomass, recruitment, and fishing mortality. This uncertainty919

was captured in the decision tables and was further explored using sensitivity analyses.920

The magnitude of catch and discards prior to 1996 is a major source of structural uncertainty in921

this assessment. As discussed in Section 2.1.2, all catch data prior to 1996 were omitted from922

this assessment on the recommendation of industry advisors and Technical Working Group, as923

was done in the 2015 assessment. Arrowtooth Flounder is known to have been discarded at sea924

in large quantities due to proteolysis of the flesh if catches were not landed and frozen quickly925

after capture. Applications of ratio estimators or models to estimate historical discard rates were926

rejected as analytical tools due to discarding of whole tows and changes to discarding behaviour927

over time.928

Stock structure of Arrowtooth Flounder is poorly understood in British Columbia. Several approaches929

are available to improve understanding of stock structure including genetic analysis, analysis of930

otolith microchemistry, and analysis of life-history traits such as growth and maturity. Arrowtooth931

Flounder is managed as a coast-wide stock. If there are distinct stocks within British Columbia932

waters, there may be risks associated with taking a large proportion of the TAC from one area. In933

particular, the less steep decline in the Queen Charlotte Sound Synoptic Survey compared to the934

declines seen in the other survey indexes raises questions about stock structure.935

The assessment model was able to fit all indices of abundance well with the possible exception936

of the Queen Charlotte Sound Synoptic Survey. Although the index has declined since 2015 (and937

in particular in 2021 after the initial Technical Working Group meetings), the decline has been938

somewhat less pronounced than the other surveys or the Discard CPUE Index. We attempted to939

better fit the Queen Charlotte Sound Synoptic Survey with survey-specific time-varying selectivity,940

but we were unable to obtain satisfactory estimates of selectivity and MCMC diagnostics on this941

model and so used time-invariant selectivity in the base model. It is possible Queen Charlotte942

Sound represents a nursery ground for Arrowtooth Flounder or factors affecting local distribution943

or movement (such as environmental conditions) have resulted in a moderately different index944

pattern in the Queen Charlotte Sound Synoptic Survey compared to the other surveys. Overall,945

the congruence between the coast-wide ‘stitched’ synoptic survey and the Discard CPUE Index946

give us some confidence that both data sources are capturing underlying biomass dynamics.947

We suggest future research consider the use of the ‘stitched’ stock-wide geostatistical index as948

a replacement for considering each of the synoptic surveys as independent samples from the949

same overall stock (sometimes with different selectivities). The distinct age composition data950

precluded us from doing that in this assessment, but future research could consider the impact951

of considering these composition data as independent samples from the same overall stock952

(perhaps with area and density expansion) or standardizing these data as well with a similar953

multivariate geostatistical model.954

There is a lack of age structures sampled from the commercial fleets from 2020 onwards. This955

would have had a minimal effect on this assessment given the last year of data was 2021. However,956

this may have an increasingly large impact on the assessment in terms of estimating selectivity,957
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recruitment, and tracking age-cohorts within the composition data. Retrospective analyses could958

be conducted excluding existing commercial age data to partially evaluate this impact. Simulation959

analyses, possibly including closed-loop simulation, could also evaluate this impact. However,960

we think it is reasonable to assume that some level of continued age structure sampling from the961

commercial fleet will be important to this assessment going forward.962

Taking into account the ecosystem considerations in Appendix F and known biology of Arrowtooth963

Flounder, there are no clear indications that current environmental conditions should modify the964

catch advice in this assessment. Future research could evaluate incorporating environmental965

variables into the Arrowtooth Flounder stock advice more explicitly. It is not clear what mechanism966

this should entail, although options may include linking environmental indices to natural mortality967

or recruitment processes (e.g., Stock and Miller 2021). Other options would include adjusting968

target fishing mortality based on ecosystem modelling (Howell et al. 2021) or through closed-969

loop simulation that aims to find management procedures that are robust to uncertainties about970

future environmental conditions (e.g., Anderson et al. 2020).971

Given the proximity of Arrowtooth Flounder spawning biomass to the LRP under the base model972

and most sensitivity analyses, as well as the declining survey indices, we suggest this stock973

assessment should be updated with new data on a relatively short interval. We suggest an974

appropriate interval would be two years once one additional survey will have been conducted975

for each subregion and new commercial biological samples will hopefully be available for aging.976

4. ACKNOWLEDGEMENTS

We thank members of the Arrowtooth Flounder Technical Working Group (Robyn Forrest, Rowan977

Haigh, Paul Starr, Diedre Finn, Rob Tadey, Bruce Turris, and Brian Mose) for their valuable978

advice and insights throughout this project. We thank members of the Sclerochronology Laboratory979

at the Pacifc Biological Station for their processing of Arrowtooth Flounder otoliths.980

We thank the reviewers for their careful reviews, which uncovered structural issues that would981

have otherwise been missed. This highlights the importance of independent peer review in the982

advisory process.983

22



5. FIGURES

Figure 1. Spatial distribution of commercial catch from 1996 to 2021 for Arrowtooth Flounder. The colour
scale is log10 transformed. Cells are 7 km wide and are only shown in cases where there are at least 3
unique vessels in a given cell to meet privacy requirements.
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Figure 2. Spatial distribution of commercial CPUE from 1996 to 2021 for Arrowtooth Flounder. The colour
scale is log10 transformed. Cells are 7 km wide and are only shown in cases where there are at least 3
unique vessels in a given cell to meet privacy requirements.

Figure 3. Commercial catch of Arrowtooth Flounder by fleet. Each year of catch starts on Feb. 21 and
ends on Feb. 20. e.g. the year 2005 catch is all catch between Feb. 21, 2005 to Feb. 20, 2006.
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Figure 4. Commercial catch of Arrowtooth Flounder by fleet. Each year of catch starts on Feb. 21 and
ends on Feb. 20. e.g. the year 2005 catch is all catch between Feb. 21, 2005 to Feb. 20, 2006.

Figure 5. Spawning biomass of Arrowtooth Flounder for the base model with BMSY reference points. The
solid black line with points show the medians of the posteriors, the shaded ribbon encapsulated by dashed
lines covers the 95% CI for the posteriors, the point at B0 is the median estimate for the unfished biomass,
and the vertical line over that point is the 95% CI for that parameter. The upper part of the CI is not shown
for reasons of clarity for the trajectory, the median and CI for B0 here is 180, 131–257 (width 126)
thousand t. The BMSY reference point lines are shown here for reference only, they are not advised for
use in decision making for this stock. See section 2.2.3 for more details.
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Figure 6. Spawning biomass of Arrowtooth Flounder for the base model with B0 reference points. See
Figure 5 for more information. The upper part of the CI is not shown for reasons of clarity for the trajectory,
the median and CI for B0 here is 180, 131–257 (width 126) thousand t.

Figure 7. Relative spawning biomass for the base model. The shaded area represents the 95% CI.
Horizontal lines indicate the 0.2 B0 (solid, red) and 0.4 B0 (dashed, green) reference points. Because the
ribbon represents relative spawning biomass (depletion) and the reference points are with respect to B0,
all uncertainty about the ratio of the spawning biomass to the reference points is captured in the ribbon
and the reference points are shown as point values.
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Figure 8. Spawning biomass of Arrowtooth Flounder for the base model compared with vulnerable
biomass for the trawl fisheries for the base model. The spawning biomass is in black and has its 95% CI
shaded. The two vulnerable biomass trajectories have their 95% CI contained withing the dotted lines of
their respective colours.

Figure 9. Recruitment of Arrowtooth Flounder for the base model. The black points are the medians of the
posteriors, the vertical black lines are the 95% CIs for the posteriors, the point at R0 is the median
estimate for the initial recruitment parameter R0, and the vertical line over that point and shaded ribbon
across the time series is the 95% CI for R0.
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Figure 10. Fishing mortality for the base model for the two trawl fisheries. The shaded area represents the
95% CI.

Figure 11. Index fits for the base model. The light grey points and vertical lines show the index values and
95% CIs; the black points show the medians of the posteriors; the black solid vertical lines show the 95%
CIs of the posteriors.
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Figure 12. Index log standardized residuals. The points are the median of the posteriors for the ϵk,t
parameters in ISCAM. The vertical lines represent the 95% CIs for those posteriors.
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Figure 13. Age composition fits for each sex for the Freezer trawler fleet. The vertical bars are the age
composition data points. The sum of the bar values equals 1 for each year/sex combination. The black
points are the medians of the posteriors for each age. The red shaded area with dotted edges represents
the 95% CIs. The panel labels are the total number of specimens (sex aggregated) fit for the year.

Figure 14. Pearson residuals for the age composition fits for each sex for the Freezer trawler fleet. The
bubbles represent the median of the posterior for Pearson residuals. Red bubbles are negative residuals,
black are positive, and dots represent zero residuals.
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Figure 15. Age composition fits for each sex for the Shoreside fleet from 1996–2007. See Figure 13 for
plot details.

Figure 16. Age composition fits for each sex for the Shoreside fleet from 2008–2019. See Figure 13 for
plot details.
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Figure 17. Pearson residuals for the age composition fits for each sex for the Shoreside fleet. The bubbles
represent the median of the posterior for Pearson residuals. Red bubbles are negative residuals, black are
positive, and dots represent zero residuals.
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Figure 18. Age composition fits for each sex for the Queen Charlotte Sound Synoptic Survey. See
Figure 13 for plot details.

Figure 19. Pearson residuals for the age composition fits for each sex for the Queen Charlotte Sound
Synoptic Survey. The bubbles represent the median of the posterior for Pearson residuals. Red bubbles
are negative residuals, black are positive, and dots represent zero residuals.
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Figure 20. Age composition fits for each sex for the Hecate Strait Synoptic Survey. See Figure 13 for plot
details.

Figure 21. Pearson residuals for the age composition fits for each sex for the Hecate Strait Synoptic
Survey. The bubbles represent the median of the posterior for Pearson residuals. Red bubbles are
negative residuals, black are positive, and dots represent zero residuals.
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Figure 22. Age composition fits for each sex for the West Coast Vancouver Island Synoptic Survey. See
Figure 13 for plot details.

Figure 23. Pearson residuals for the age composition fits for each sex for the West Coast Vancouver
Island Synoptic Survey. The bubbles represent the median of the posterior for Pearson residuals. Red
bubbles are negative residuals, black are positive, and dots represent zero residuals.
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Figure 24. Estimated and fixed selectivities by sex for the base model. The dots are estimated
selectivity-at-age, the shaded areas around are the 95% CI for those estimates. Single lines with no CI are
fixed selectivities. Dashed lines represent maturity, with the colours representing the sexes and are the
same as for selectivity curves.

Figure 25. Posterior distributions for reference points and other values of interest for the base model.
Subscripts are 1 = Freezer trawlers and 2 = Shoreside.
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5.1. BRIDGE MODEL FIGURES

Figure 26. MCMC estimates of spawning biomass (left panel) and relative spawning biomass (right panel)
for the first four bridging models. Points and bars on the left in the left panel represent B0 values and 95%
credible interval. The first model in the legend has a shaded ribbon representing the credible interval (CI),
the others have dotted lines the same colour as the medians which represent the CI.
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Figure 27. Pairs plots for MCMC estimated parameters in the bridging model in which data from
2015–2021 are added. See Figure 33 for q subscript descriptions.

Figure 28. MCMC estimates of spawning biomass (left panel) and relative spawning biomass (right panel)
for the second group of bridging models. See Figure 26 for more information.
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Figure 29. MCMC estimates of spawning biomass (left panel) and relative spawning biomass (right panel)
for the third group of bridging models. See Figure 26 for more information.
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Figure 30. Autocorrelation plots for MCMC estimated lead parameters in the bridge model that has a
modified fishing year. See Figure 33 for q subscript descriptions.
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Figure 31. Autocorrelation plots for MCMC estimated lead parameters in the bridge model that has a
modified fishing year. See Figure 33 for q subscript descriptions.

41



Figure 32. Pairs plots for MCMC estimated parameters in the bridging model for which the WCHG index
was removed. See Figure 33 for q subscript descriptions.
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5.2. MCMC DIAGNOSTIC FIGURES FOR THE BASE MODEL

Figure 33. Prior probability distributions used in the base model (blue shaded areas) overlaid with
posterior distribution histograms. The solid red line is the mode of the prior distribution, the vertical solid
black line is the mean of the prior, and the vertical dashed black lines represent one standard deviation
from the mean. Plots that are entirely shaded blue represent uniform priors. Catchability (q) parameters
for the survey indices have numerical subscripts which are: 1 = QCS Synoptic, 2 = HS Multi, 3 = HS
Synoptic, 4 = WCVI Synoptic, 5 = Discard CPUE.
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Figure 34. Trace plots for MCMC output of estimated lead parameters in the base model. The MCMC run
has chain length 10,000,000 with a sample taken every 5,000th iteration. Of the 2,000 samples taken, the
first 1,000 were removed as a burn-in period. See Figure 33 for q subscript descriptions.
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Figure 35. Autocorrelation plots for MCMC output of estimated lead parameters in the base model. The
x-axis values are the lag between posteriors. See Figure 33 for q subscript descriptions.
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Figure 36. Trace plots for MCMC output of estimated selectivity parameters in the base model. â are the
estimates of selectivity-at-age-50%, γ̂ are the estimated standard deviations on selectivity-at-age-50%.
The first numerical subscript is the gear number which are: 1 = Freezer trawlers, 2 = Shoreside, 3 = QCS
Synoptic, 4 = HS Multi, 5 = HS Synoptic, 6 = WCVI Synoptic, 7 = Discard CPUE. The letter subscripts ‘f’
and ‘m’ correspond to female and male, and the second numerical subscripts represent the year block for
selectivity. For the base model, there is only the subscript ‘1’ for all parameters shown, because
time-varying selectivity was not implemented.
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Figure 37. Autocorrelation plots for MCMC output of estimated selectivity parameters in the base model.
The x-axis values are the lag between posteriors. See Figure 36 for descriptions of the parameter
subscripts.
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Figure 38. Pairs plots for MCMC estimated parameters in the base model. The lines in the points plots in
the lower triangular panels are linear models with shaded 95% confidence intervals. The line plots in the
diagonal panels represent density of the parameter values, and the values in the upper triangular panels
are the correlations between parameters with text size being directly proportional to the absolute value of
those values. See Figure 33 for q subscript descriptions.
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Figure 39. Pairs plots for MCMC estimated selectivity parameters in the base model. The lines in the
points plots in the lower triangular panels are linear models with shaded 95% confidence intervals. The
line plots in the diagonal panels represent density of the parameter values, and the values in the upper
triangular panels are the correlations between parameters with text size being directly proportional to the
absolute value of those values. See Figure 36 for descriptions of the parameter subscripts.
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5.3. SENSITIVITY MODEL FIGURES

Figure 40. Spawning biomass for sensitivities to changes in the ϑ2 and ρ parameters (due to changes to σ
and τ ), and steepness (h) parameter. The B0 estimates for the ‘Decrease σ to 0.135’ and ‘Increase τ to
1.0’ models are outside the axis limits. For the sake of clarity of the trajectories, they were left off the plot.
They are estimated as 445 (236–602) thousand t and 370 (200–581) thousand t respectively.

Figure 41. Relative spawning biomass for sensitivities to changes in the ϑ2 and ρ parameters (due to
changes to σ and τ ), and steepness (h) parameter.
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Figure 42. Priors and posteriors for the sensitivity in which the steepness prior was changed. This can be
compared to the base model in Figure 33.

Figure 43. Spawning biomass for sensitivities to changes in the natural mortality (M ) parameters. In the
base model, this parameter is fixed for both male and females. In these sensitivities, it is estimated for the
sex in question in addition to the changes in prior, while the parameter for the opposite sex remains fixed.
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Figure 44. Relative spawning biomass for sensitivities to changes in the natural mortality (M ) parameters.

Figure 45. Spawning biomass for the sensitivities to changes in the catchability (qk) parameters. For these
sensitivities the priors for all gears (k) are modified in the same way.
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Figure 46. Relative spawning biomass for the sensitivities to changes in the priors for the catchability (qk)
parameters. For these sensitivities the priors for all gears (k) are modified in the same way.

Figure 47. Catchability estimates for the sensitivities to changes in the priors for the catchability (qk)
parameters. The points are the median of the posterior and the vertical lines are the 95% CI.
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Figure 48. Spawning biomass for the sensitivities to changes in the selectivity parameters (âk and γk). For
the first sensitivity, the selectivities for the two commercial trawl fisheries are fixed to the maturity for the
two commercial trawl gears (k). For the second, the Queen Charlotte Sound Synoptic Survey has three
year blocks or time-varying selectivity, 2003–2010, 2011–2016, and 2017–2021.

Figure 49. Relative spawning biomass for the sensitivities to changes in the selectivity (âk and γk)
parameters.
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Figure 50. Spawning biomass and vulnerable biomass for the sensitivity model for which the selectivity
has been set equal to the maturity for the two commercial trawl fleets. The spawning biomass is in black
and has its 95% CI shaded. The two vulnerable biomass trajectories have their 95% CI contained withing
the dotted lines of their respective colours.

Figure 51. Index fits for the sensitivity where the Queen Charlotte Sound Synoptic Survey has
time-varying selectivity.
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Figure 52. Time-varying selectivity for the Queen Charlotte Sound Synoptic Survey, where the panels are
blocks of years: 2003–2010 (left), 2011–2016 (middle), and 2017–2021 (right). See Figure 24 for more
information.
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Figure 53. Autocorrelation for estimated selectivity parameters for the sensitivity model which has
time-varying selectivity for the Queen Charlotte Sound Synoptic Survey. See Figure 36 for descriptions of
the parameter subscripts.
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Figure 54. Trace plots for selectivity parameters for the sensitivity model which has time-varying selectivity
for the Queen Charlotte Sound Synoptic Survey. See Figure 37 for parameter and subscript descriptions.
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Figure 55. Spawning biomass for the sensitivity in which the design-based survey index data has been
replaced with geostatistical-based survey indices. See Appendix D.

Figure 56. Relative spawning biomass for the sensitivity in which the design-based survey index data has
been replaced with geostatistical-based survey indices. See Appendix D.
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Figure 57. Index fits for the sensitivity in which the design-based survey index data has been replaced
with geostatistical-based survey indices. See Appendix D.
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5.4. RETROSPECTIVE FIGURES FOR THE BASE MODEL

Figure 58. Spawning biomass for retrospective models comparing the base model with models with
successively removed years of data. All models have the same parameterization, and were run as
MCMCs in exactly the same way as the base model.

Figure 59. A closer view of Figure 58.
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Figure 60. Relative spawning biomass for retrospective models.

Figure 61. Recruitment of Arrowtooth Flounder for the retrospective models. The points are the medians
of the posteriors, the vertical lines are the 95% Credible intervals for the posteriors, the points at R0 are
the median estimates for the initial recruitment parameters R0, and the vertical lines over those points is
the 95% Credible interval for R0. The shaded ribbon is the R0 credible interval across the whole time
series for the base model. The models are slightly offset from each other for ease of viewing.
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Figure 62. Recruitment of Arrowtooth Flounder for the retrospective models. The points are the medians
of the posteriors, the vertical lines are the 95% CIs for the posteriors, the points at R0 are the median
estimates for the initial recruitment parameters R0, and the vertical lines over those points is the 95% CI
for R0. The shaded ribbon is the R0 CI across the whole time series for the base model. The models are
slightly offset from each other for ease of viewing.

Figure 63. Fishing mortality for the base and retrospective models for the two trawl fisheries. The shaded
area represents the 95% CI for the base model, the dotted lines represent the 95% CI for the retrospective
models.
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Figure 64. Index fits for the base and retrospective models. The light grey points and vertical lines show
the index values and 95% CIs. The other coloured points show the medians of the posteriors; the solid
vertical lines show the 95% CIs for the posteriors. The lines connecting points along the time series are
only present for aesthetic value.

Figure 65. Log standardized residuals for the base and retrospective model index fits.
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6. TABLES

Table 1. Recent coastwide commercial fishery landings and discards (t) for Arrowtooth Flounder.

Year Landings Discarded

1996 4,711.5 3,459.6
1997 2,795.8 2,442.5
1998 4,145.9 3,272.3
1999 3,927.9 4,019.9
2000 4,061.6 3,429.4
2001 8,289.3 2,340.4
2002 5,031.4 2,957.6
2003 4,067.4 3,046.0
2004 6,239.3 3,204.2
2005 16,237.4 2,576.4
2006 6,901.3 1,300.0
2007 2,819.1 1,747.9
2008 3,876.1 1,562.6
2009 1,259.2 2,619.0
2010 646.1 2,714.9
2011 5,872.6 2,407.3
2012 4,869.7 2,370.0
2013 8,913.1 2,257.8
2014 12,641.3 1,658.7
2015 10,050.2 1,762.6
2016 11,184.9 1,312.9
2017 10,430.2 973.5
2018 8,575.8 687.8
2019 7,027.6 615.1
2020 1,692.8 247.1
2021 2,459.6 276.0

Table 2. Recent coastwide commercial fishery landings and discards (t) of Arrowtooth Flounder for the
Freezer trawlers fleet.

Fleet

Freezer trawlers Shoreside

Year Landings Discarded Landings Discarded

1996 0.0 0.7 4,711.5 3,459.0
1997 0.0 0.0 2,795.8 2,442.5
1998 0.0 0.0 4,145.9 3,272.3
1999 0.0 0.0 3,927.9 4,019.9
2000 6.8 106.3 4,054.9 3,323.1
2001 12.5 18.9 8,276.9 2,321.5
2002 28.0 22.4 5,003.5 2,935.2
2003 6.7 9.4 4,060.7 3,036.5
2004 0.4 0.0 6,238.9 3,204.2
2005 1,257.8 340.8 14,979.5 2,235.5
2006 3,302.5 113.5 3,598.8 1,186.5
2007 1,123.4 41.8 1,695.7 1,706.1
2008 1,956.0 189.8 1,920.1 1,372.8
2009 0.0 2.1 1,259.2 2,616.8
2010 140.5 34.5 505.6 2,680.4
2011 2,841.8 335.3 3,030.8 2,072.1
2012 3,085.2 326.6 1,784.6 2,043.4
2013 7,375.2 392.6 1,537.9 1,865.2
2014 11,231.9 355.9 1,409.4 1,302.9
2015 8,855.3 637.3 1,194.9 1,125.3
2016 9,367.2 305.2 1,817.7 1,007.8
2017 8,286.9 292.9 2,143.3 680.6
Continued on next page ...
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Year Landings Discarded Landings Discarded

2018 7,527.5 257.3 1,048.3 430.5
2019 5,836.1 312.4 1,191.5 302.7
2020 947.3 26.4 745.5 220.7
2021 1,376.7 28.2 1,082.9 247.8

Table 3. Recent commercial fishery landings and discards (t) for Arrowtooth Flounder by area.

Area

3CD 5ABCDE

Year Landings Discarded Landings Discarded

1996 3,068.0 892.0 1,643.5 2,567.7
1997 1,453.9 537.3 1,341.9 1,905.1
1998 2,486.2 680.4 1,659.7 2,591.9
1999 1,474.8 864.9 2,453.1 3,155.1
2000 1,789.7 588.8 2,272.0 2,840.6
2001 4,943.0 586.9 3,346.4 1,753.5
2002 2,457.1 672.1 2,574.4 2,285.5
2003 1,974.1 670.5 2,093.3 2,375.5
2004 3,356.1 669.0 2,883.2 2,535.2
2005 6,317.7 531.5 9,919.6 2,044.8
2006 2,645.2 278.2 4,256.1 1,021.8
2007 605.6 459.4 2,213.5 1,288.5
2008 3,075.6 669.0 800.5 893.6
2009 722.8 719.3 536.4 1,899.6
2010 208.1 786.4 438.0 1,928.5
2011 3,284.9 960.3 2,587.7 1,447.0
2012 4,253.2 807.5 616.5 1,562.5
2013 7,067.7 822.8 1,845.4 1,435.0
2014 8,188.0 675.8 4,453.4 982.9
2015 5,234.8 902.6 4,815.4 860.1
2016 6,556.2 626.6 4,628.8 686.4
2017 4,289.4 372.9 6,140.7 600.6
2018 1,619.1 190.0 6,956.8 497.8
2019 1,270.7 109.7 5,756.8 505.4
2020 954.0 77.0 738.7 170.1
2021 790.0 45.4 1,669.6 230.5

Table 4. Indices of abundance and CVs for the base model.

QCS
Synoptic

HS
Multi

HS
Synoptic

WCVI
Synoptic

Discard
CPUE

Year Index CV Index CV Index CV Index CV Index CV

1996 – – 6.48 0.26 – – – – 101.81 0.21
1997 – – – – – – – – 98.50 0.22
1998 – – 7.73 0.28 – – – – 107.29 0.21
1999 – – – – – – – – 105.80 0.21
2000 – – 12.58 0.23 – – – – 92.80 0.21
2001 – – – – – – – – 88.36 0.21
2002 – – 10.38 0.17 – – – – 101.78 0.21
2003 5.75 0.11 11.09 0.23 – – – – 105.26 0.21
2004 11.86 0.19 – – – – 8.53 0.26 107.39 0.21
2005 13.63 0.17 – – 14.53 0.23 – – 113.84 0.21
2006 – – – – – – 7.98 0.19 60.83 0.21
2007 7.41 0.14 – – 6.57 0.19 – – 75.70 0.21
2008 – – – – – – 6.44 0.28 73.64 0.21
Continued on next page ...
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Year Index CV Index CV Index CV Index CV Index CV

2009 9.32 0.13 – – 12.61 0.17 – – 115.27 0.21
2010 – – – – – – 14.71 0.17 118.39 0.21
2011 13.37 0.19 – – 15.24 0.14 – – 92.93 0.21
2012 – – – – – – 5.48 0.14 84.20 0.21
2013 11.3 0.17 – – 14.03 0.17 – – 106.95 0.22
2014 – – – – – – 13.82 0.11 89.52 0.22
2015 13.79 0.15 – – 8.23 0.18 – – 75.76 0.22
2016 – – – – – – 10.2 0.23 68.91 0.22
2017 12.22 0.19 – – 10.67 0.26 – – 64.21 0.22
2018 – – – – – – 2.75 0.1 54.55 0.22
2019 12.17 0.15 – – 4.23 0.1 – – 49.05 0.22
2020 – – – – – – – – 41.21 0.23
2021 10.43 0.14 – – 3.89 0.12 3.39 0.12 40.66 0.23

Table 5. Parameters and prior probability distributions used in the base model.

Parameter Number
estimated

Bounds
[low,

high]

Prior (mean, SD) (single value =
fixed)

Log recruitment [ln(R0)] 1 [-2, 6] Uniform
Steepness [h] 1 [0.2, 1] Beta(α = 13.4, β = 2.4)
Log natural mortality (female) [ln(Mfemale)] 0 Fixed −1.609
Log natural mortality (male) [ln(Mmale)] 0 Fixed −1.050

Log mean recruitment [ln(R)] 1 [-2, 6] Uniform
Log initial recruitment [Rinit] 1 [-5, 6] Uniform
Variance ratio, observation error [ρ] 0 Fixed 0.059
Total variance [ϑ2] 0 Fixed 1.471

Fishery age at 50% logistic selectivity (âk) 2 [0, 1] Uniform
Fishery SD of logistic selectivity (γ̂k) 2 [0, 1] Uniform
Survey age at 50% logistic selectivity (âk) 3 [0, 1] Uniform
Survey SD of logistic selectivity (γ̂k) 3 [0, 1] Uniform
Survey catchability (qk) 5 [0, 1] Normal(0.5, 1)
Log fishing mortality values (Γk,t) 52 [-30, 3] [-30, 3]
Log recruitment deviations (ωt) 26 None Normal(0, τ )
Initial log recruitment deviations (ωinit,t) 19 None Normal(0, τ )

Table 6. Posterior median and 95% credible interval estimates of key parameters for the base model.

Parameter Gear Sex Year range 2.5% 50% 97.5%

R0 – – 1996-2021 85.98 118.69 169.38
h – – 1996-2021 0.67 0.89 0.98

M1 – female 1996-2021 0.20 0.20 0.20
M2 – male 1996-2021 0.35 0.35 0.35
R – – 1996-2021 75.33 85.59 99.19

Rinit – – 1996-2021 46.74 63.10 81.25
B0 – – 1996-2021 130.66 180.38 257.41

SB0 – – 1996-2021 130.66 180.38 257.41
BMSY – – 1996-2021 17.87 31.72 59.69
MSY1 Freezer trawlers – 1996-2021 3.74 5.47 7.77
FMSY1

Freezer trawlers – 1996-2021 0.34 1.31 3.73
UMSY1 Freezer trawlers – 1996-2021 0.29 0.73 0.98
MSY2 Shoreside – 1996-2021 6.69 9.83 14.02
FMSY2

Shoreside – 1996-2021 0.86 4.04 14.19
UMSY2 Shoreside – 1996-2021 0.58 0.98 1.00

q1 QCS Synoptic – 1996-2021 0.09 0.12 0.16
q2 HS Multi – 1996-2021 0.11 0.13 0.15

Continued on next page ...
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Parameter Gear Sex Year range 2.5% 50% 97.5%

q3 HS Synoptic – 1996-2021 0.12 0.16 0.22
q4 WCVI Synoptic – 1996-2021 0.08 0.10 0.12
q5 Discard CPUE – 1996-2021 1.18 1.36 1.54

â1,f,1 Freezer trawlers female 1996-2021 7.34 7.97 8.60
γ̂1,f,1 Freezer trawlers female 1996-2021 0.85 1.02 1.20
â1,m,1 Freezer trawlers male 1996-2021 6.86 7.35 7.94
γ̂1,m,1 Freezer trawlers male 1996-2021 0.75 0.89 1.04
â2,f,1 Shoreside female 1996-2021 8.21 8.67 9.13
γ̂2,f,1 Shoreside female 1996-2021 0.93 1.06 1.21
â2,m,1 Shoreside male 1996-2021 7.94 8.40 8.88
γ̂2,m,1 Shoreside male 1996-2021 0.84 0.96 1.08
â3,f,1 QCS Synoptic female 1996-2021 5.55 7.25 9.61
γ̂3,f,1 QCS Synoptic female 1996-2021 1.78 2.46 3.50
â3,m,1 QCS Synoptic male 1996-2021 4.91 6.30 8.59
γ̂3,m,1 QCS Synoptic male 1996-2021 1.13 1.56 2.20
â4,f,1 HS Multi female 1996-2021 9.00 9.00 9.00
γ̂4,f,1 HS Multi female 1996-2021 0.50 0.50 0.50
â4,m,1 HS Multi male 1996-2021 9.00 9.00 9.00
γ̂4,m,1 HS Multi male 1996-2021 0.50 0.50 0.50
â5,f,1 HS Synoptic female 1996-2021 8.13 9.66 11.67
γ̂5,f,1 HS Synoptic female 1996-2021 2.11 2.54 3.19
â5,m,1 HS Synoptic male 1996-2021 8.60 10.45 12.73
γ̂5,m,1 HS Synoptic male 1996-2021 1.79 2.12 2.50
â6,f,1 WCVI Synoptic female 1996-2021 7.73 8.59 9.68
γ̂6,f,1 WCVI Synoptic female 1996-2021 1.34 1.59 1.95
â6,m,1 WCVI Synoptic male 1996-2021 6.27 6.89 7.56
γ̂6,m,1 WCVI Synoptic male 1996-2021 0.85 1.01 1.20
â7,f,1 Discard CPUE female 1996-2021 9.00 9.00 9.00
γ̂7,f,1 Discard CPUE female 1996-2021 0.50 0.50 0.50
â7,m,1 Discard CPUE male 1996-2021 9.00 9.00 9.00
γ̂7,m,1 Discard CPUE male 1996-2021 0.50 0.50 0.50

Table 7. Posterior median and 95% credible interval of proposed reference points for the base model.
Biomass numbers are in thousands of tonnes. Subscript 1 signifies the Freezer trawler fleet, subscript 2
signifies the Shoreside fleet.

Reference point Median Credible interval

SB0 180.38 130.66-257.41
0.2B0 36.08 26.13-51.48
0.4B0 72.15 52.26-102.96

SB2021 68.70 56.84-84.11
SB2022 67.77 54.99-85.38
FMSY1

1.31 0.34-3.73
FMSY2

4.04 0.86-14.19
BMSY 31.72 17.87-59.69

0.4BMSY 12.69 7.15-23.87
0.8BMSY 25.38 14.30-47.75

MSY1 5.47 3.74-7.77
MSY2 9.83 6.69-14.02
F20211 0.06 0.05-0.08
F20212 0.04 0.03-0.05
UMSY1

0.73 0.29-0.98
UMSY2 0.98 0.58-1.00
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Table 8. Posterior median and 95% credible intervals of spawning biomass for the base model. Values are
in thousands of tonnes.

Year Median Credible interval

1996 157.39 142.27–175.31
1997 154.04 139.46–171.72
1998 151.73 137.58–169.38
1999 146.91 133.38–164.64
2000 141.60 128.87–158.86
2001 137.82 125.05–154.26
2002 132.49 120.00–148.26
2003 132.04 119.65–147.78
2004 135.26 122.81–151.48
2005 138.12 125.36–154.62
2006 132.31 119.27–149.56
2007 136.15 122.99–153.45
2008 141.21 128.31–158.50
2009 142.74 129.58–159.96
2010 143.92 131.02–160.72
2011 144.17 131.31–161.26
2012 138.78 126.09–155.32
2013 133.97 121.72–150.44
2014 124.01 112.04–140.03
2015 110.72 99.00–126.03
2016 100.36 88.89–114.53
2017 89.84 78.86–103.89
2018 80.91 70.26–94.70
2019 74.22 62.62–88.23
2020 68.59 56.80–83.32
2021 68.70 56.84–84.11
2022 67.77 54.99–85.38

Table 9. Posterior median and 95% credible intervals for relative spawning biomass for the base model.

Year Median Credible interval

1996 0.87 0.60–1.21
1997 0.85 0.59–1.19
1998 0.84 0.59–1.16
1999 0.81 0.57–1.12
2000 0.78 0.55–1.09
2001 0.76 0.53–1.06
2002 0.73 0.51–1.02
2003 0.73 0.51–1.01
2004 0.75 0.52–1.04
2005 0.76 0.54–1.05
2006 0.73 0.52–1.01
2007 0.75 0.53–1.04
2008 0.78 0.55–1.08
2009 0.79 0.55–1.09
2010 0.79 0.56–1.10
2011 0.79 0.56–1.09
2012 0.76 0.54–1.05
2013 0.74 0.52–1.01
2014 0.68 0.48–0.94
2015 0.61 0.43–0.84
2016 0.55 0.39–0.77
2017 0.49 0.35–0.69
2018 0.45 0.31–0.62
2019 0.41 0.29–0.57
2020 0.38 0.27–0.54
2021 0.38 0.26–0.54
2022 0.37 0.26–0.53
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Table 10. Posterior median and 95% credible intervals for recruitment for the base model. Values are in
millions of fish.

Year Median Credible interval

1997 105.42 82.63–130.97
1998 98.54 78.14–119.36
1999 130.22 109.11–159.57
2000 171.87 144.54–201.94
2001 153.94 130.17–181.07
2002 144.30 121.40–169.77
2003 137.69 115.93–163.31
2004 112.17 94.36–132.38
2005 96.22 79.23–115.00
2006 101.46 85.60–122.35
2007 112.86 95.75–132.74
2008 116.24 98.78–135.66
2009 78.61 65.20–94.46
2010 75.92 62.79–91.71
2011 59.06 46.69–74.18
2012 88.05 70.82–109.66
2013 63.10 48.00–83.06
2014 78.89 55.86–109.48
2015 44.16 27.73–65.15
2016 30.45 16.70–52.72
2017 54.87 30.95–89.67
2018 61.55 27.51–113.88
2019 45.48 20.02–89.87
2020 81.70 19.90–364.61
2021 81.68 19.14–366.16

Table 11. Posterior median and 95% credible intervals for fishing mortality for the base model.

FFreezertrawlers FShoreside

Year Median Credible interval Median Credible interval

1996 0.00 0.00–0.00 0.11 0.09–0.14
1997 0.00 0.00–0.00 0.07 0.06–0.08
1998 0.00 0.00–0.00 0.10 0.08–0.12
1999 0.00 0.00–0.00 0.10 0.09–0.12
2000 0.00 0.00–0.00 0.10 0.08–0.12
2001 0.00 0.00–0.00 0.15 0.12–0.18
2002 0.00 0.00–0.00 0.12 0.10–0.15
2003 0.00 0.00–0.00 0.11 0.09–0.13
2004 0.00 0.00–0.00 0.15 0.13–0.19
2005 0.02 0.02–0.03 0.31 0.25–0.38
2006 0.05 0.04–0.07 0.09 0.07–0.12
2007 0.02 0.01–0.02 0.06 0.05–0.08
2008 0.03 0.02–0.04 0.05 0.04–0.07
2009 0.00 0.00–0.00 0.06 0.05–0.07
2010 0.00 0.00–0.00 0.04 0.04–0.05
2011 0.04 0.03–0.05 0.07 0.06–0.08
2012 0.04 0.03–0.05 0.05 0.04–0.06
2013 0.10 0.08–0.12 0.05 0.04–0.06
2014 0.16 0.13–0.20 0.04 0.04–0.05
2015 0.15 0.12–0.18 0.04 0.03–0.05
2016 0.17 0.14–0.21 0.06 0.05–0.07
2017 0.18 0.14–0.22 0.07 0.05–0.08
2018 0.18 0.14–0.22 0.04 0.03–0.05
2019 0.15 0.12–0.20 0.04 0.03–0.06
2020 0.02 0.02–0.03 0.03 0.02–0.04
2021 0.06 0.05–0.08 0.04 0.03–0.05
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Table 12. Posterior median and 95% credible intervals for annnual harvest rate (Ut) for the base model.

UFreezertrawlers UShoreside

Year Median Credible interval Median Credible interval

1997 0.00 0.00–0.00 0.07 0.05–0.08
1998 0.00 0.00–0.00 0.09 0.07–0.11
1999 0.00 0.00–0.00 0.10 0.08–0.12
2000 0.00 0.00–0.00 0.09 0.08–0.11
2001 0.00 0.00–0.00 0.14 0.12–0.16
2002 0.00 0.00–0.00 0.11 0.09–0.14
2003 0.00 0.00–0.00 0.11 0.09–0.13
2004 0.00 0.00–0.00 0.14 0.12–0.17
2005 0.00 0.00–0.00 0.27 0.23–0.32
2006 0.02 0.02–0.03 0.09 0.07–0.11
2007 0.05 0.04–0.07 0.06 0.05–0.07
2008 0.02 0.01–0.02 0.05 0.04–0.06
2009 0.03 0.02–0.04 0.06 0.05–0.07
2010 0.00 0.00–0.00 0.04 0.04–0.05
2011 0.00 0.00–0.00 0.07 0.06–0.08
2012 0.04 0.03–0.04 0.05 0.04–0.06
2013 0.04 0.03–0.05 0.05 0.04–0.06
2014 0.09 0.08–0.11 0.04 0.04–0.05
2015 0.15 0.12–0.18 0.04 0.03–0.05
2016 0.14 0.11–0.17 0.06 0.05–0.07
2017 0.16 0.13–0.19 0.06 0.05–0.08
2018 0.16 0.13–0.20 0.04 0.03–0.05
2019 0.16 0.13–0.20 0.04 0.03–0.05
2020 0.14 0.11–0.18 0.03 0.02–0.04
2021 0.02 0.02–0.03 0.04 0.03–0.05
2022 0.06 0.05–0.08 0.00 0.00–0.00

Table 13. A summary of parameter changes to the base model for each sensitivity.

Description Changes

Decrease σ to 0.135 ϑ2 = 1.519; ρ = 0.028
Increase τ to 1.0 ϑ2 = 0.962; ρ = 0.038

Decrease τ to 0.6 ϑ2 = 2.500; ρ = 0.100
Decrease mean of h prior to 0.72 Beta(α = 11.72, β = 4.56)

Estimated ln(Mfemale) with prior sd=0.2 Normal(ln(0.20), 0.5)
Estimated ln(Mfemale) with prior sd=1.6 Normal(ln(0.20), 2.5)

Estimated ln(Mmale) with prior sd=0.2 Normal(ln(0.35), 0.5)
Estimated ln(Mmale) with prior sd=1.6 Normal(ln(0.35), 2.5)

Increase ln(qk) prior mean to 1.0 Normal(ln(1.0), 0.5) for all gears k
Broad prior on ln(qk), prior sd=1.5 Normal(ln(0.5), 1.5) for all gears k

Comm. selectivities equal maturity ogive âk = ȧ; γ̂k = γ̇ for both fleets k
QCS TV selectivity 3 year blocks QCS selectivity is time-varying with year

blocks 2003–2010, 2011-2016, and
2017–2021

Geostatistical based survey indices Design-based indices replaced with
Geostatistical-based indices for all surveys
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Table 14. Decision table for the base model showing posterior probabilities that 2023 projected biomass is
below selected reference points and benchmarks (Table 7). An example of how to read this table is: For a
catch of 4,000 t (row 3) there is a 0.0% chance that the 2023 biomass will fall below the LRP of 0.2B0, a
67.6% chance that it will fall below the USR of 0.4B0, and a 62.7% chance that the biomass in 2023 will be
less than the biomass in 2022.

Catch
(thousand t)

P(B2023 < 0.2B0) P(B2023 < 0.4B0) P(B2023 < B2022)

0 0.000 0.491 0.007
2 0.000 0.583 0.189
4 0.000 0.676 0.627
6 0.000 0.749 0.863
8 0.000 0.810 0.952

10 0.003 0.870 0.978
11 0.008 0.892 0.985
12 0.009 0.914 0.991
13 0.014 0.932 0.992
14 0.021 0.938 0.993
15 0.030 0.951 0.995
16 0.039 0.959 0.996
17 0.056 0.966 0.998
18 0.067 0.971 0.998
19 0.084 0.977 0.998
20 0.108 0.978 0.998
22 0.156 0.987 0.998
24 0.211 0.988 0.999
26 0.273 0.990 0.999
28 0.334 0.990 0.999
30 0.418 0.994 1.000
50 0.953 1.000 1.000
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APPENDIX A. BIOLOGICAL DATA APPENDIX

This appendix summarizes the biological data for Arrowtooth Flounder in British Columbia.984

The length and age compositions collected from both surveys and commercial sources are985

illustrated (Figures A.1 and A.2); however, all biological parameters were estimated from synoptic986

survey data only. The values used in the assessment (Table A.1) were aggregated from the four987

synoptic surveys that are each run biennially off the West coast of British Columbia: the Queen988

Charlotte Sound Synoptic Survey, the Hecate Strait Synoptic Survey, the West Coast Vancouver989

Island Synoptic Survey, and the West Coast Haida Gwaii Synoptic Survey.990

A.1. LENGTH AND WEIGHT MODEL

All valid length/weight pairs of data were extracted based on the criteria shown in table A.1. The991

length-weight equation used was:992

Ws = αLβs
s (A.1)

where αs and βs are parameters for sex s and Ls and Ws are paired length-weight observations.993

We applied Eq. A.1 to survey observations for the three synoptic surveys used in this assessment.994

Results are plotted for each survey individually, and together with data from the fourth survey995

West Coast Haida Gwaii Synoptic Survey to represent PMFC areas 3CD and 5ABCDE combined996

as ‘coastwide’ (Figure A.3).997

A.2. VON-BERTALANFFY MODEL

We used the von-Bertalanffy function to estimate growth rates for Arrowtooth Flounder:998

Ls = L∞s(1− e−ks(as−t0s )) (A.2)

where L∞s , ks, and t0s are parameters specific to sex s and Ls and as are paired length-age999

observations.1000

We applied Eq. A.2 to survey observations for the three synoptic surveys used in this assessment.1001

Results are plotted for each survey individually, and together with data from the fourth survey1002

West Coast Haida Gwaii Synoptic Survey to represent PMFC areas 3CD and 5ABCDE combined1003

as ‘coastwide’ (Figure A.4).1004

A.3. MATURITY-AT-AGE MODEL

The maturity-at-age model used for Arrowtooth Flounder estimates age-at-50% maturity (as50%)1005

and standard deviation of age-at-50% maturity (σs50%) by applying the L-BFGS-B quasi-Newton1006

algorithm to minimize the sum-of-squares between the observed and expected proportion mature:1007

Pas =
1

1 + e−σs50%
(as−as50% )

(A.3)

where Pas is the observed proportion mature at age as for sex s.1008
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The same equation can also be applied to lengths instead of ages. We applied Eq. A.3 to survey1009

observations of both age and length from the three synoptic surveys used in this assessment.1010

Results are plotted for each survey individually, and together with data from the fourth survey1011

West Coast Haida Gwaii Synoptic Survey to represent PMFC areas 3CD and 5ABCDE combined1012

as ‘coastwide’ (Figure A.5).1013
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A.4. FIGURES

Figure A.1. Length-frequency plot where female fish are shown as red bars and male fish are shown
behind as blue bars. The total number of fish measured for a given survey and year are indicated in the
top left corner of each panel. Histograms are only shown if there are more than 20 fish measured for a
given survey-year combination.
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Figure A.2. Example age-frequency plot. Female fish are shown as red circles and male fish are shown
behind as blue circles. The total number of fish aged for a given survey or fishery and year are indicated
along the top of the panels. Diagonal lines are shown at five-year intervals to facilitate tracing cohorts
through time.
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Figure A.3. Length/weight fits by sex. The length-weight curve is of the form log(Wi) ∼ Student-t
(df = 3, log(a) + b log(Li), σ), with Wi and Li representing the weight and length for fish i and σ
representing the observation error scale. The degrees of freedom of the Student-t distribution is set to 3 to
be robust to outliers. The variables a and b represent the estimated length-weight parameters. Female
model fits are indicated as solid red lines and male model fits are indicated as blue lines. Text on the
panels shows the parameter estimates and open circles represent individual fish that the models are fit to.
These figures include all survey samples.
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Figure A.4. The length-age growth curve is a von-Bertalanffy model of the form
Li ∼ Log-normal (log(linf(1− exp(−k(Ai − t0)))), σ) where Li and Ai represent the length and age of fish
i, linf , k, and t0 represent the von-Bertalanffy growth parameters, and σ represents the scale parameter.
Female model fits are indicated as solid red lines and male model fits are indicated as dashed blue lines.
Text on the panels shows the parameter estimates and open circles represent individual fish that the
models are fit to.
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Figure A.5. Age- and length-at-maturity ogive plots. Maturity ogives are fit as logistic regressions to
individual fish specimens, which are categorized as mature vs. not mature. The solid red lines represent
fits to the female fish and the dashed blue lines represent fits to the male fish. The vertical lines indicate
the estimated age or length at 50% maturity. Text on the panels indicates the estimated age and length at
5, 50 and 95% maturity for females (F) and males (M). Short rug lines along the top and bottom of each
panel represent up to 1500 randomly chosen individual fish with a small amount of random jittering in the
case of ages to help differentiate individual fish. Models are fit to all available survey samples regardless
of time of year.
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A.5. TABLES

Table A.1. Growth parameters estimated outside the ISCAM model. All parameters were estimated using
samples from the four synoptic surveys, and were filtered to include areas 3CD and 5ABCDE only. For the
age-at-50% maturity estimates, the following values were used to further filter the data:
maturity_convention_code = 4 (flatfish), maturity_code = 5 (Male - Spawning, testes large, white and
sperm evident), (Female - Ripe, ovaries containing entirely translucent, mature ova. eggs loose and will
run from oviducts under slight pressure), and usability codes = 0 (Unknown), 1 (Fully usable), 2 (Fail, but
all data usable), 6 (Gear torn, all data ok).

Parameter Female Male

Asymptotic length (linf ) 61.770 47.159
Brody growth coefficient (k) 0.182 0.274
Theoretical age at zero length (t0) -0.479 -0.258
Scalar in length-weight allometry (α) 0.0000076 0.0000095
Power parameter in length-weight allometry (β) 3.052 2.974
Age at 50% maturity (ȧ) 5.566 4.103
SD at 50% maturity (γ̇) 0.911 1.247
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APPENDIX B. PROPORTION FEMALE ANALYSIS

B.1. INTRODUCTION

The split-sex model requires a proportion of females as an input. In the Gulf of Alaska, observer1014

length frequencies were used to determine that the stock is approximately 70% female (Shotwell1015

et al. (2021)). In British Columbia, both commercial fishery and synoptic survey data were used1016

to determine the proportion female. This appendix descibes the weighting algorithm used, which1017

is the same as what was used in Grandin and Forrest (2017) and based on the methods applied1018

in Holt et al. (2016). The analysis here is based on aggregated area data for a coastwide stock.1019

B.2. DATA SELECTION

Both commercial and synoptic sample age data were filtered for input into the proportion female1020

routine.1021

Commercial trawl fishery1022

The following three attributes were used to filter the age data for the commercial trawl fishery:1023

1. Species category1024

a. Included codes:1025

i. Unsorted1026

ii. Discards1027

b. Rejected codes:1028

i. Unknown1029

ii. Sorted1030

iii.Keepers1031

iv.Longline1032

2. Sample type1033

a. Included codes:1034

i. Total catch1035

ii. Random1036

iii.Random from randomly assigned set1037

iv.Random from set after randomly assigned set1038

v. Random from set requested by vessel master1039

b. Rejected codes1040

i. Selected (various codes)1041

ii. Stratified1042

iii.Unknown sample for NMFS Triennial survey1043

3. Gear code1044

a. Included codes:1045

i. Bottom trawl1046
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ii. Unknown trawl1047

b. Rejected codes1048

i. Unknown1049

ii. Trap1050

iii.Gillnet1051

iv.Handline1052

v. Longline1053

vi.Midwater trawl1054

vii.Troll1055

viii.Seine1056

ix.Jig1057

x. Recreational1058

xi.Various other obscure catch methods1059

Synoptic surveys1060

All available age data from the synoptic surveys were used.1061

Years1062

Age data from 1996 to 2019 were used. There was no age data available after 2019.1063

Quarters of the year1064

1 = January 1 - March 311065

2 = April 1 - June 301066

3 = July 1 - September 301067

4 = October 1 - December 311068

Areas1069

Coastwide, defined as areas 3CD and 5ABCDE aggregated.1070

Sex1071

Males and females only. Some records have the sex recorded as unknown or unsexed. Those1072

records along with records with NULL sex were removed.1073

B.3. COMMERCIAL TRAWL FISHERY

Observations within a sample are likely to be correlated due to the small area which is trawled1074

in a single fishing event. In addition, trip samples may be correlated due to single vessel fishing1075

practices. This algorithm calculates a sex-specifc mean weight by trip, calculated from individual1076

sex-specific length observations converted to weight using Eq. B.1, then uses Eqs. B.2-–B.8 to1077

estimate proportion of females.1078

B.4. SYNOPTIC SURVEYS

For surveys,the same algorithm is followed except that the quarter of the year is not included in1079

the calculation. This is because the surveys are single events which occur during the summer1080

months only.1081
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B.5. EQUATIONS

Specimens without weight data but with length data have their weights calculated as follows:1082

ŵi,j,s = αsl
βs

i,j,s (B.1)

where αs and βs are parameters for sex s and wi,j,s and li,j,s are paired length-weight observations1083

for specimen i in sample j.1084

Total weight for each sample is the sum of the specimens in the sample:1085

Wj,s,t =

Nj,s,t

Σ
i=1

ŵi,j,s,t (B.2)

where Wj,s,t is the total weight for sample j, sex s, trip t, and Nj,s,t is the number of specimens in1086

sample j for sex s.1087

Calculation of the mean sample weight by trip and sex is given by:1088

Ws,t =

Kt

Σ
j=1

Wj,s,tSj,t

Kt

Σ
j=1

Sj,t

(B.3)

where Ws,t is the mean weight for sex s and trip t, weighted by sample weight, where Kt is the1089

number of samples in trip t, and Sj,t is the sample weight for sample j from trip t.1090

To calculate the total catch weight for sampled hauls in each trip, we use the following:1091

Ct =

Kt

Σ
j=1

Cj,k (B.4)

where Ct is the total catch weight for sampled hauls for trip t, Kt is the number of samples in trip1092

t, and Cj,t is the catch weight associated with sample j and trip t.1093

The total weight in each quarter of the year by sex is given by:1094

Wq,s =

Tq

Σ
t=1

Wq,s,tRq,t

Tq

Σ
t=1

Rq,t

(B.5)

where Wq,s is the total weight for sex s and quarter of year q, Rq,t is the trip weight for all sampled1095

trips in quarter q, and Tq is the number of sampled trips in quarter q.1096

The total catch weight for sampled hauls per quarter of the year is:1097

Cq =

Kq

Σ
t=1

Ct (B.6)
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where Cq is the total catch weight for sampled hauls for quarter q, Kq is the number of trips in1098

quarter q, and Ct is the catch weight associated with trip t.1099

Now, the total weight by year and sex is calculated from:1100

Wy,s =

4

Σ
q=1

Wq,y,sCq,y

4

Σ
q=1

Cq,y

(B.7)

where Ws,y is the total weight for year y, sex s, Wq,y,s is the weight in quarter q of year y, and Cq,y1101

is the catch in quarter q of year y.1102

Finally, the proportion female is given by:1103

Py =
Wy,s=Female

Wy,s=Male +Wy,s=Female
(B.8)

where Py is the proportion female by weight for year y and Wy,s for s = Female and s = Male1104

are given by Eq. B.7.1105

B.6. RESULTS

Table B.1 shows the proportions female for the commercial trawl fishery and the four synoptic1106

surveys. The means of all the years included in the table are shown in the last row. There is1107

very good agreement between the survey and commercial mean proportions and therefore it1108

is reasonable to take the mean of the means to arrive at a single value for overall proportion of1109

females in the Arrowtooth Flounder stock in British Columbia. The mean of the means for the1110

synoptic surveys and the commercial fishery is 0.79. That is the proportion used as an input to1111

all models (base, bridging, sensitivities, and retrospectives) in this assessment.1112

Tables B.2 and B.3 give a summary of the data used for the proportion female calculations. In1113

most years there is a large number of weights included.1114

Table B.1. Proportion of female Arrowtooth Flounder in the commercial trawl fishery and four synoptic
surveys coastwide. The survey acronyms stand for QCS = Queen Charlotte Sound Synoptic Survey, HS =
Hecate Strait Synoptic Survey, WCVI = West Coast Vancouver Island Synoptic Survey and WCHG = West
Coast Haida Gwaii Synoptic Survey.

Year Commercial trawl QCS HS WCVI WCHG

1996 0.85 – – – –
1997 0.85 – – – –
1998 0.80 – – – –
1999 0.79 – – – –
2000 0.78 – – – –
2001 0.89 – – – –
2002 0.88 – – – –
2003 0.78 0.84 – – –
2004 0.89 0.88 – 0.85 –
2005 0.85 0.90 0.82 – –
Continued on next page ...
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... Continued from previous page

Year Commercial trawl QCS HS WCVI WCHG

2006 0.86 – – 0.85 0.76
2007 0.84 0.76 0.78 – 0.81
2008 0.92 – – 0.85 0.86
2009 0.68 0.80 0.75 – –
2010 0.73 – – 0.82 0.83
2011 0.74 0.75 0.79 – –
2012 0.83 – – 0.75 0.84
2013 0.77 0.72 0.73 – –
2014 0.78 – – 0.77 0.66
2015 0.76 0.74 0.74 – –
2016 0.77 – – 0.72 0.82
2017 0.76 0.75 0.77 – –
2018 0.77 – – 0.77 0.80
2019 0.78 0.77 0.78 – –

Mean 0.81 0.79 0.77 0.79 0.81

Table B.2. Summary of samples and weights used for the calculation of proportion of female Arrowtooth
Flounder in the commercial trawl fishery.

Year Number of
trips

Number of
samples

Number of
weights -

Male

Number of
weights -
Female

1996 1 6 195 479
1997 6 6 71 194
1998 24 25 410 777
1999 27 27 411 769
2000 16 16 174 569
2001 33 34 407 1,081
2002 17 17 185 632
2003 24 26 299 810
2004 31 32 402 1,107
2005 49 53 773 1,878
2006 28 30 366 1,128
2007 28 31 432 1,088
2008 4 7 79 346
2009 11 11 165 327
2010 13 13 268 319
2011 18 24 441 789
2012 16 20 267 759
2013 29 40 631 1,463
2014 33 41 689 1,331
2015 25 40 760 1,306
2016 14 22 411 741
Continued on next page ...
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... Continued from previous page

Year Number of
trips

Number of
samples

Number of
weights -

Male

Number of
weights -
Female

2017 14 19 324 581
2018 12 19 309 603
2019 10 15 231 429

Table B.3. Summary of samples and weights used for the calculation of proportion of female Arrowtooth
Flounder in the synoptic surveys. See Table B.1 for survey acronym meanings.

Survey Year Number of
samples

Number of
weights -

Male

Number of
weights -
Female

QCS 2003 95 1,486 1,994
QCS 2004 97 1,190 1,654
QCS 2005 86 1,464 2,142
QCS 2007 87 1,595 2,278
QCS 2009 138 1,459 2,195
QCS 2011 160 1,614 2,237
QCS 2013 134 1,567 1,783
QCS 2015 146 1,552 2,245
QCS 2017 111 1,257 1,765
QCS 2019 130 1,412 2,546

HS 2006 30 313 445
HS 2007 22 229 467
HS 2008 29 307 708
HS 2010 41 343 594
HS 2012 50 302 534
HS 2014 25 343 318
HS 2016 11 74 164
HS 2018 6 57 91

WCVI 2005 166 3,405 5,270
WCVI 2007 43 726 1,242
WCVI 2009 75 1,572 2,436
WCVI 2011 122 1,131 2,112
WCVI 2013 112 1,106 1,693
WCVI 2015 105 1,232 1,787
WCVI 2017 68 709 1,122
WCVI 2019 75 762 1,323

WCHG 2004 38 511 951
WCHG 2006 36 567 1,432
WCHG 2008 64 930 1,811
WCHG 2010 87 774 1,627
Continued on next page ...
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Survey Year Number of
samples

Number of
weights -

Male

Number of
weights -
Female

WCHG 2012 102 865 1,364
WCHG 2014 102 1,026 1,684
WCHG 2016 97 1,009 1,480
WCHG 2018 80 816 1,318
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APPENDIX C. DISCARD CPUE INDEX STANDARDIZATION

We draw on methods as written in Anderson et al. (2019) and Forrest et al. (2020), reproducing1115

them in parts here for completeness. We sought to generate an index of Arrowtooth Flounder1116

abundance from discard commercial trawl catch per unit effort (CPUE) data that was standardized1117

for depth, fishing locality (defined spatial regions), month, vessel, and latitude.1118

C.1. DEFINING THE COMMERCIAL DISCARD FLEET

Before fitting a standardization model, we had to filter and manipulate the available catch and1119

effort data to generate a dataset appropriate for model fitting. The unique aspect in this analysis,1120

compared to similar CPUE analysis in other recent stock assessments done in British Columbia,1121

is that we started by filtering all bottom trawl commercial fishing event data to only include those1122

events for which Arrowtooth Flounder were caught and all caught were discarded. This approach1123

was suggested by industry representatives at a Technical Working Group meeting as an approach1124

to avoid tows targeting Arrowtooth Flounder and minimize issues related to changes in targeting1125

behaviour over time.1126

Commercial groundfish bottom trawl data from 1996 to present have been recorded to the fishing-1127

event level in the presence of on-board observers or video monitoring. Since we have data1128

on individual vessels for this modern fleet, and in keeping with previous analyses for Pacific1129

groundfish stocks, we defined a ‘fleet’ for the modern dataset that includes only vessels that1130

qualify by passing some criteria of regularly catching (and subsequently discarding) Arrowtooth1131

Flounder.1132

We follow the approach used in several recent B.C. groundfish stock assessments by requiring1133

vessels to have caught (and discarded) the species in at least 100 tows across all years of1134

interest, and to have passed a threshold of five trips (trips that recorded some of the species)1135

for at least five years—all from 1996 to 2021 inclusive1136

C.2. DEFINING THE STANDARDIZATION MODEL PREDICTORS

For depth and latitude, we binned the values into a sequence of bands to allow for nonlinear1137

relationships between these predictors and CPUE (e.g., Maunder and Punt 2004). For depth, we1138

binned trawl depth into bands 25m wide. For latitude, we used bands that were 0.1 degrees1139

wide. To ensure sufficient data to estimate a coefficient for each factor level, we limited the1140

range of depth bins to those that fell within the 0.1% to 99.9% cumulative probability of positive1141

observations and then removed any factor levels (across all predictors) that contained fewer than1142

0.1% of the positive observations.1143

Predictors that are treated as factors in a statistical model need a reference or base level—a1144

level from which the other coefficients for that variable estimate a difference. The base level then1145

becomes the predictor value that is used in the prediction for the standardized index. We chose1146

the most frequent factor level as the base level. For example, we set the base month as the most1147

common month observed in the dataset filtered for only tows where the species was caught. This1148

choice of base level only affects the intercept or relative magnitude of our index because of the1149

form of our model (discussed below). This relative magnitude should not affect the outcomes of1150

the stock assessment model because the discard CPUE index catchability is estimated with an1151

uninformative prior.1152
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C.3. GLMM INDEX STANDARDIZATION MODEL

Fisheries CPUE data contains both zeros and positive continuous values. A variety of approaches1153

have been used in the fishery literature to model such1154

data. Here, we use a Tweedie GLMM (generalised linear mixed effect model):1155

yi ∼ Tweedie(µi, p, ϕ), 1 < p < 2, (C.1)

µi = exp
(
Xiβ + αlocality

j[i] + αlocality−year
k[i] + αvessel

l[i]

)
, (C.2)

αlocality
j ∼ Normal(0, σ2

α locality), (C.3)

αlocality−year
k ∼ Normal(0, σ2

α locality−year), (C.4)

αvessel
l ∼ Normal(0, σ2

α vessel), (C.5)

where i represents a single tow, yi represents the catch (kg) per unit effort (hours trawled), Xi1156

represents a vector of fixed-effect predictors (depth bins, months, latitude bins), β represents1157

a vector of associated coefficients, and µi represents the expected CPUE in a trip or tow. The1158

random effect intercepts (α symbols) are allowed to vary from the overall intercept by locality1159

j (αlocality
j ), locality-year k (αlocality−year

k ), and vessel l (αvessel
l ) and are constrained by normal1160

distributions with respective standard deviations denoted by σ parameters.1161

We can then calculate the standardized estimate of CPUE for year t, µt, as1162

µt = exp (Xtβ) (C.6)

where Xt represents a vector of predictors set to the reference (r) levels with the year set to the1163

year of interest. Because each of the α random intercepts is set to zero, the index is predicted1164

for an average locality, locality-year, and vessel (for modern data). We estimated the fixed effects1165

with maximum marginal likelihood while integrating over the random effects with the statistical1166

software TMB via the R package glmmTMB (Brooks et al. 2017). We used standard errors (SE)1167

as calculated by TMB on log(µt) via the generalized delta method. We then calculated the 95%1168

Wald confidence intervals as exp(µt ± 1.96SEt).1169

For comparison, we calculated an unstandardized timeseries using a similar procedure but1170

without any of the covariates other than a factor predictor for each year. This is similar to calculating1171

the geometric mean of CPUE each year but with an assumed Tweedie observation model instead1172

of a lognormal observation model that does not allow for zeros.1173
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Figure C.1. Bubble plots showing distribution of the locality predictor by year. The area and colour of
each circle represents the number of fishing events.
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Figure C.2. Bubble plots showing distribution of the depth predictor by year. The area and colour of each
circle represents the number of fishing events.
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Figure C.3. Bubble plots showing distribution of the latitude predictor by year. The area and colour of
each circle represents the number of fishing events.
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Figure C.4. Bubble plots showing distribution of the vessel predictor by year. The area and colour of each
circle represents the number of fishing events.The vessel ID numbers of have anonymized by randomly
sorting the vessels and assigning sequential numbers.
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Figure C.5. Bubble plots showing distribution of the month predictor by year. The area and colour of each
circle represents the number of fishing events.

Figure C.6. Total catch and effort from the discard fleet of Arrowtooth Flounder.
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Figure C.7. Fixed effect coefficient estimates. In all cases, the values are with respect to the reference
(most common) factor level (the missing factor level in each plot). Dots, thick, and thin lines represent
mean, 50%, and 95% confidence intervals.
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Figure C.8. Random intercept values in log space for locality and vessel.
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Figure C.9. Random intercept values for the locality-year interaction effect. Panel labels represent IDs for
the localities.
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Figure C.10. Commercial discard CPUE indices. The red line is the standardized version, the black solid
line is a version with only a year predictor with the Tweedie observation model, and the dashed line is the
summed catch for the species divided by effort. The ribbons indicate the 95% (Wald) confidence intervals.
The standardization process is not having a large impact on the shape of the time series here, which is
likely indicative that there have not been systematic changes in the standardization factors included in the
model that have impacted CPUE.
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APPENDIX D. GEOSTATISTICAL STANDARDIZATION OF SURVEY INDICES

We used geostatistical spatiotemporal GLMMs (generalized linear mixed effect models) to standardize1174

the survey indices as an alternative to design-based estimators (e.g., Shelton et al. 2014; Thorson1175

et al. 2015; Anderson et al. 2019; Anderson et al. 2022).1176

We applied these models in two ways:1177

1. to standardize individual survey indices for use in the stock assessment model and1178

2. to ‘stitch’ the four synoptic trawl surveys into a single synthetic index for comparison with1179

trends in estimated biomass from the stock assessment model and with the commercial1180

discard CPUE index.1181

D.1. INDIVIDUAL SURVEY MODELLING

For the individual survey indices, we used delta/hurdle models (herein referred to as the ∆-1182

Gamma model (Aitchison 1955)). In this model, synoptic survey catch (Figures D.1, D.2) is1183

defined based on a probability of encounter model and a positive catch model.1184

Pr[C > 0] = p, (D.1)

where C is the observed catch p is the probability of encounter. The positive component given1185

encounter is defined as1186

Pr[C = c|C > 0] = Gamma (c, γ, λ/γ) , (D.2)

where c is the observed catch given C > 0, γ is the shape parameter, λ is the expected value,1187

and λ/γ combined is the scale parameter.1188

The linear component of the binomial encounter model is defined as1189

ps,t = logit−1
(
αBin
k + f(ln(Ds,t)) + ωBin

s + ϵBin
s,t

)
, (D.3)

where the superscript Bin denotes binomial component parameters. The parameter αBin
k is an1190

intercept for each survey k, f(ln(Ds,t)) is a penalized smoother on log bottom depth, ωBin
s is a1191

spatial random field value1192

ω ∼ MVNormal (0,Σω) , (D.4)

and ϵBin
s,t is a spatiotemporal random field value1193

ϵ ∼ MVNormal(0,Σϵ). (D.5)

The linear component of the Gamma positive catch model is defined as1194

λs,t = exp
(
αPos
k + f(ln(Ds,t)) + ωPos

s + ϵs, tPos +Os,t

)
, (D.6)

where the superscript Pos denotes positive component parameters, Os,t represents an offset1195

variable (here log area swept) and the other parameters have a similar definition to the binomial1196

model above.1197
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D.2. SURVEY STITCHING

For the survey stitching, the models took on a similar form except that:1198

1. the models did not include independent intercepts for the individual years1199

2. the spatiotemporal random effects were instead allowed to follow a random walk (this helped1200

constrain the model when stitching the biennial surveys)1201

3. we considered models that included and excluded a smoother for depth1202

4. we considered a Tweedie observation error model as an alternative.1203

The linear component of the binomial encounter model is defined as1204

ps,t = logit−1
(
βBin
0 + f(ds,t) + ωBin

s + δBin
s,t

)
, (D.7)

where the superscript Bin denotes binomial component parameters. The parameter βBin
0 is1205

an overall intercept, f(ds,t) is a penalized smoother function for log depth with upper basis1206

dimension of 5, ωBin
s is a spatial random field value1207

ω ∼ MVNormal (0,Σω) , (D.8)

and δBin
s,t is a random effect drawn from a spatiotemporal random field that is assumed to follow a1208

random walk1209

δt=1 ∼ MVNormal(0,Σϵ), (D.9)
δt>1 = δt−1 + ϵt−1, ϵt−1 ∼ MVNormal (0,Σϵ) . (D.10)

The linear component of the Gamma positive catch model is defined as1210

λs,t = exp
(
βPos
0 + f(ds,t) + ωPos

s + δPoss,t +Os,t

)
, (D.11)

where the superscript Pos denotes positive component parameters, Os,t represents an offset1211

variable (here log area swept) and the other parameters have a similar definition to the binomial1212

model above.1213

We also considered a Tweedie model with the linear component defined as1214

µs,t = exp (β0 + f(ds,t) + ωs +Os,t + δs,t) , (D.12)

where the parameters have a similar definition as above in the binomial and Gamma models but1215

the data are accounted for with a single observation distribution—the Tweedie—with associated1216

mean, power, and scale parameters.1217

Furthermore, we considered versions of the above models without depth as a predictor. In total,1218

we fit four models: ∆-Gamma with depth, ∆-Gamma without depth, Tweedie with depth, and1219

Tweedie without depth. Predictions from the ∆-Gamma without depth are shown in Figures D.31220

and D.4 as examples.1221

D.3. CALCULATING ANNUAL STANDARDIZED BIOMASS

The total biomass b for a given year t is calculated as:1222
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bt

nj

Σ
j=1

pj,tλj,taj , (D.13)

where j indexes nj grid cells, pj is the probability of encounter in grid cell j, λj is the expected1223

catch conditional on encounter in grid cell j, and aj is the area of grid cell j (4 km2).1224

D.4. MODEL FITTING

We fit our models with the R package sdmTMB (Anderson et al. 2019; Anderson et al. 2022),1225

which develops input Stochastic Partial Differential Equation (SPDE) matrices using the R package1226

INLA (Lindgren et al. 2011; Rue et al. 2017), calculates the model log likelihood via a TMB1227

(Kristensen et al. 2016) template, and minimizes the negative marginal log likelihood via the R (R1228

Core Team 2022) non-linear minimization routine stats::nlminb(). The Laplace approximation,1229

as implemented in TMB, is used to integrate over random effects. We followed this optimization1230

with a Newton optimizer, stats::optimHess() to further reduce the negative log likelihood.1231

To ensure our final optimization was consistent with convergence, we checked that all gradients1232

with respect to fixed effects were < 0.001 and that Hessian matrices were positive-definite. We1233

constructed our SPDE meshes such that the minimum allowed distance between vertices in1234

the mesh (INLA cutoff) was 20 km in the coastwide model; 10 km for Queen Charlotte Sound1235

Synoptic Survey, Hecate Strait Synoptic Survey, and the West Coast Vancouver Island Synoptic1236

Survey; and 7 km for West Coast Haida Gwaii Synoptic Survey (smaller survey area with a sharp1237

depth transition).1238

D.5. MODELLED INDICES

The geostatistical indices for individual surveys had lower CVs, on average, than the design-1239

based indices—particularly in Queen Charlotte Sound (Fig. D.5). The ∆-Gamma and Tweedie1240

stitched indices were similar to each other. The most noticeable difference was that including1241

a smoother for depth slightly reduced the estimate of biomass in 2003–2004 and shrunk the1242

confidence intervals in those years (Fig. D.6).1243

The geostatistical coastwide stitched survey indices all showed a strong resemblance to the1244

commercial Discard CPUE index (Fig. D.7) with mostly overlapping confidence intervals, marked1245

declines from 2010 to 2021, and a dip in the mid 2000s. There was some discrepancy in the1246

initial year of the survey (2003) with the Discard CPUE being slightly higher, although the majority1247

of the confidence intervals still overlap.1248
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D.6. GEOSTATISTICAL INDEX FIGURES

Figure D.1. Survey data bubble plot for 2003 to 2012. The area and colour of circles corresponds to set
density. Sets with zero Arrowtooth Flounder catch are indicated with a grey cross.
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Figure D.2. Survey data bubble plot for 2013 to 2021. The area and colour of circles corresponds to set
density. Sets with zero Arrowtooth Flounder catch are indicated with a grey cross.
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Figure D.3. Predicted Arrowtooth Flounder biomass density for 2003 to 2012 from the coastwide
∆-Gamma model without depth.
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Figure D.4. Predicted Arrowtooth Flounder biomass density for 2013 to 2021 from the coastwide
∆-Gamma model without depth.
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Figure D.5. Individual geostatistical indices compared to design-based indices. Lines indicate means and
ribbons 95% percent confidence intervals.

Figure D.6. Stitched indexes of abundance for Arrowtooth Flounder from four models with the commercial
discard CPUE index shown in (dashed) grey. Lines indicate means and ribbons 95% confidence intervals.
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Figure D.7. Stitched indexes of abundance for Arrowtooth Flounder from four models with the commercial
discard CPUE index shown in (dashed) grey. Lines indicate means and ribbons 95% confidence intervals.
All indexes were centered such that their geometric means from 2003–2021 were one.
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APPENDIX E. TRENDS IN BODY CONDITION

We investigated spatiotemporal patterns in Arrowtooth Flounder body condition (Nash et al.1249

2006) with body condition (hereafter ‘condition’) indexing the ‘plumpness’ of an organism. We1250

do so by fitting a coastwide geostatistical model to the residuals from the Arrowtooth Flounder1251

length-weight relationship following other recent approaches (Thorson 2015; Lindmark et al.1252

2022).1253

E.1. CONDITION MODEL

We first fit a non-spatial length-weight model of the form log(Wi) ∼ Student-t (df = 3, log(a) +1254

b log(Li), σ), with Wi and Li representing the weight and length for fish i and σ representing the1255

observation error scale. The degrees of freedom (df) of the Student-t distribution is set to 3 to be1256

robust to outliers. The variables a and b represent the estimated length-weight parameters. We fit1257

these separately for male and female fish.1258

We then calculated condition factor Kcond as Wi/Ŵi where Ŵi refers to the predicted weight from1259

the above weight-length model. We removed condition factor values that were greater than the1260

0.995 quantile or less than the 0.005 quantile to lessen the effect of outliers.1261

We then fit a geostatistical model following the methods in Appendix D.1262

Our model was of the form:1263

Kcond
s,t ∼ Lognormal

(
µcond
s,t , σcond

)
, (E.1)

µcond
s,t = exp (β0 + f(ds,t) + δs,t) . (E.2)

Here, β0 is a global intercept, f(ds,t) is a penalized smoother for depth, and δs,t represents a1264

spatiotemporal random field that follows a random walk1265

δt=1 ∼ MVNormal(0,Σϵ), (E.3)
δt>1 = δt−1 + ϵt−1, ϵt−1 ∼ MVNormal (0,Σϵ) . (E.4)

We considered a model that included a spatial random field; however, the variance of this random1266

field was estimated near zero and so we excluded it in our final model. We then calculated an1267

annual condition-factor index as the average predicted Kcond
s,t across all survey 4 km × 4 km grid1268

cells each year.1269

Finally, we also explored a model configuration where depth was included as a non-orthogonal1270

third-order polynomial that could evolve between years via a random walk. This model included1271

independent spatial and spatiotemporal random fields and a smoother on year, because the1272

previous random field configuration would not converge with the increased flexibility of a time-1273

vary depth effect.1274

E.2. CONDITION RESULTS

Our modeling reveals an overall decline in coastwide body condition from around 2004 until1275

2012, an increase until 2015, and a subsequent decline in recent years levelling off since 20191276

(Fig. E.1). However, when split up by survey, we see that this overall trend masks differences1277
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that we see along the coast (Fig. E.2). The variation over time is relatively small compared to the1278

between-region variation (Fig. E.2).1279

Condition within the West Coast Vancouver Island Synoptic Survey has been declining since1280

around 2015, but condition in other survey regions has remained relatively stable in those years1281

(Fig. E.2). Furthermore, the coastwide index trend of an increase from 2012 to 2015 was driven1282

largely by the Queen Charlotte Sound Synoptic Survey (Fig. E.2). We can also see these trends1283

when looking at the spatial predictions through time (Fig. E.3).1284

The depth smoother indicates a higher condition factor in deeper waters (Fig. E.4), which coincides1285

with a higher condition factor in the West Coast Vancouver Island Synoptic Survey, which covers1286

deeper regions than the other surveys. When allowed to vary through time via a random walk,1287

the effect of depth does not appear related to average bottom temperatures recorded on all tows1288

at depths between 100 and 200 m for each year (Fig. E.5). This is consistent with other findings1289

that latent unmeasured factors can explain the vast majority of spatiotemporal variability in fish1290

condition (Lindmark et al. 2022).1291

E.3. CONDITION FIGURES

Figure E.1. Coastwide condition index. Lines and ribbons indicate means and 95% confidence intervals.
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Figure E.2. Condition index split by survey region. Lines and ribbons indicate means and 95% confidence
intervals.
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Figure E.3. Coastwide map of modelled condition anomalies. Values are shown in log space such that
blue values are plumper than expected and red values less plump than expected. X and Y axes are in
UTM zone 9 units of km.
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Figure E.4. Log depth smoother from the condition model. Line represents mean and the ribbon 95%
confidence intervals. Horizontal rug lines are shown on the top where data are present.

Figure E.5. Time-varying third order polynomial effect of depth on condition. Line represents mean and
the ribbon 95% confidence intervals and both are coloured by the mean bottom temperatures (degrees C)
recorded on all trawl tows at depths between 100 and 200 m in each year.
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APPENDIX F. ECOSYSTEM CONSIDERATIONS

Arrowtooth Flounder are habitat and prey generalists (Fargo et al. 1981; Yang 1993; Doyle et1292

al. 2018). However, we report diet composition from Alaska, because no diet data are collected1293

on any of the surveys used in this assessment. Based on almost 2,000 stomachs collected in1294

the early 1990s in the GOA, Arrowtooth Flounder consumed a diet dominated by zooplankton,1295

fish, and benthic invertebrates (Yang 1993; Spies et al. 2019). For juveniles (<= 20 cm TL),1296

euphausiids made up nearly 60% of their diet, followed by capelin at 24%. Adults consumed1297

mostly capelin (Mallotus villosus), euphausiids, adult and juvenile Walleye Pollock (Gadus chalcogrammus),1298

Pandalid shrimp, herring, and other forage fish, none of which account for more than 22% of the1299

overall diet. In the same region and time period, predation by Pacific Cod (Gadus macrocephalus),1300

Pacific Halibut (Hippoglossus stenolepis), and Steller sea lions (Eumetopias jubatus) together1301

explained about 10% of adult arrowtooth mortality and the flatfish trawl fishery accounted for1302

2% (Spies et al. 2019). Juvenile Arrowtooth Flounder mortality was caused by adult Arrowtooth1303

Flounder, and both adult and juvenile pollock, but the total of these mortality sources is less than1304

7% of juvenile Arrowtooth Flounder production (Spies et al. 2019).1305

Migration patterns are not well known for Arrowtooth Flounder, but there is some indication that1306

larger fish may migrate to deeper water in winter and shallower water in summer (Rickey 1995;1307

Fargo and Starr 2001). Spawning and hatching occur in these deeper waters (> 350 m) along1308

the continental shelf break in fall and winter (Rickey 1995; Blood et al. 2007). At these depths,1309

predation risk is relatively low, and cold temperatures along with intrinsically low metabolic rates1310

ensure extended availability of yolk reserves, lowering the risk of larval starvation (Doyle et al.1311

2018). Larval duration and drift is protracted, contributing to widespread delivery of larvae to1312

coastal, continental shelf and slope waters and resulting in low connectivity between spawning1313

and settlement areas (Doyle et al. 2018). In the GOA, the smallest fish (< 10 cm) were typically1314

found shallower than 200 m with all immature fish (< 30 cm) concentrating at < 400 m. In colder1315

years, these size classes tended to be found deeper. In contrast, mature fish (30–60 cm) tended1316

to be found deepest (> 800 m) in warmer years (Doyle et al. 2018). A preliminary climate-related1317

vulnerability assessment for GOA indicated low risk, high resilience overall; however, there exists1318

some potential stage-specific sensitivity to temporal mis-match between larvae and zooplankton1319

prey with increased temperatures (Doyle et al. 2018).1320

Within Canadian Pacific waters, a lack of correlation between change in abundance and changes1321

in condition suggests that bottom-up ecosystem effects are unlikely to be driving overall stock1322

status for Arrowtooth Flounder. Coastwide within Canada, the condition index dropped steadily1323

between 2004 and 2012 (Fig. E.1), while the survey biomass index for the same area increased1324

by over 50% (Fig. D.7). Likewise, a sharp increase in condition index in 2015 has not been1325

associated with any positive trajectories in biomass in the following 7 years.1326

The evidence that condition tends to be higher in deeper, and therefore cooler, waters is consistent1327

with findings of some potential sensitivity to temperature (English et al. 2021). Local warming1328

(positive temperature velocity) was associated with declines in biomass only in already warmer1329

areas, and associated with increases biomass of immatures (~ 38 cm for females, ~ 31 cm for1330

males) in cooler areas. However, when the shape of depth effect on condition was allowed1331

to vary between year, there was not an obvious difference between warmer and cooler years1332

(Fig. E.5). If there is any weak association, it might be that condition is higher in shallower waters1333

in the warmer year, which is consistent with the coastwide condition index also climbing steeply1334

between 2013 and 2015, the period that includes the 2014–2016 marine heat wave and spikes1335

in the abundances of some more southern species of euphausiid (Boldt et al. 2021). In contrast,1336
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mean body condition in the GOA was low during the marine heat wave (2015) and even lower in1337

2017 (Spies et al. 2019). This was hypothesized to be due to both increased energetic demands1338

with warm temperatures and lack of forage fish prey. Marine heat wave conditions occurred again1339

in the Northeast Pacific in 2018, and 2019–2020, although they were not as extreme as in 2014–1340

2016 (Boldt et al. 2021).1341

Of what are presumed to be the dominant natural predators (based on data from Alaska (Spies1342

et al. 2019)) few appear likely to cause the declines in Arrowtooth Flounder spawning biomass1343

since 2011 (Figure 5). Walleye Pollock, predators of juvenile Arrowtooth Flounder, have experienced1344

an overall increase in survey biomass punctuated by a shortterm declines that either coincided1345

with (southern stock) or preceeded (northern stock) the downturn in Arrowtooth Flounder. Abundances1346

of both Pacific Cod (Forrest et al. 2020) and Pacific Halibut (DFO 2022) appear to have been1347

relatively stable at the decadal scale, despite considerable interannual variability. Only Steller’s1348

Sea Lion have experienced a steady population growth rate of around 4.3% per year during1349

the past two decades (DFO 2021), but without any obvious changes in trajectory that could be1350

associated with the changes in Arrowtooth Flounder spawning biomass.1351
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APPENDIX G. MODEL DESCRIPTION

G.1. INTRODUCTION

Stock Assessment modelling was done using the Integrated Statistical Catch Age Model (ISCAM),1352

developed by S. Martell (Martell et al. 2011). ISCAM was written using the AD Model Builder1353

framework. ISCAM is a statistical catch-at-age model with many modelling options implemented1354

in a Bayesian estimation framework. The authors have modified ISCAM substantially over the1355

years, and further extensive modifications were made for this assessment. The package gfiscam,1356

on the WSL2 branch contains all code and Makefiles necessary to compile ISCAM to run the1357

models presented in this assessment.1358

The execution of all ISCAM models was performed in Linux using Bourne again shell (Bash)1359

scripts. Compilation of results, and generation of tables and figures was done in R using the1360

gfiscamutils package developed by the authors.1361

G.2. MODEL DESCRIPTION

This section contains the documentation and equations for the ISCAM age-structured model, its1362

steady-state version that is used to calculate reference points, the observation models used1363

in predicting observations, and the components of the objective function that formulate the1364

statistical criterion used to estimate model parameters. A documented list of symbols used1365

in model equations is given in Table G.1. The documentation presented here is essentially a1366

revised version of the ISCAM user guide (Martell 2011).1367

Note that all the model equations are presented for a sex structured model with S sexes. Models1368

can therefore be constructed with data and estimates for two sexes, female only, or both male1369

and female combined into a single sex bin.1370

The following list describes modifications specific to the Arrowtooth Flounder assessment:1371

1. Split sex, S = 2.1372

2. Two-fleet commercial fishery.1373

3. Total mortality is constant across ages, Zt,a = Zt.1374

4. Sex-specific selectivity.1375

5. Optional time-varying selectivity for the Queen Charlotte Sound Synoptic Survey.1376

6. Age-composition observations were assumed to come from a Dirichlet-multinomial distribution.1377

7. Fecundity and maturity are synonymous and used interchangeably.1378

8. 100% of mortality, Zt, occurs prior to spawning.1379

9. Unfished spawning biomass is represented as SB0 or B0, and includes biomass from both1380

sexes.1381

G.3. ANALYTIC METHODS: EQUILIBRIUM CONSIDERATIONS

G.3.1. A STEADY-STATE AGE-STRUCTURED MODEL

For the steady-state conditions represented in Section G.6.1, we assume the parameter vector Θ1382

in Eq. G.15 is unknown and would be estimated by fitting ISCAM to data.1383
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For a given set of growth parameters and maturity-at-age parameters defined by Eq. G.16,1384

growth is assumed to follow von Bertalanffy (Eq. G.17). Mean weight-at-age is given by the1385

allometric relationship in Eq. G.18, and the age-specific vulnerability and fecundity are given1386

by age-based logistic functions (Eqns. G.19 and G.20). The terms vulnerability and selectivity1387

are used interchangeably throughout this document, although, technically, selectivity refers to1388

the fishing gear, while vulnerability refers to all processes affecting the availability of fish to the1389

fishery. Selectivity parameters can be fixed or estimated.1390

Survivorship for unfished and fished populations is defined by Eqns. G.21 and G.22, respectively.1391

It is assumed that all individuals ages A and older (i.e., the plus group) have the same total1392

mortality rate. The incidence functions refer to the life-time or per-recruit quantities such as1393

spawning biomass per recruit (ϕE and ϕe, Eq. G.23) or vulnerable biomass per recruit (ϕB and1394

ϕb, Eq. G.24). Note that upper and lower case subscripts denote unfished and fished conditions,1395

respectively. Unfished spawning biomass is given by Eq. G.26 and the recruitment compensation1396

ratio (Myers and Mertz 1998) is given by Eq. G.27. The steady-state equilibrium recruitment Re1397

is given by Eq. G.28. It is assumed that recruitment follows a Beverton-Holt stock recruitment1398

model of the form shown in Eq. G.28, where the maximum juvenile survival rate so is given by:1399

so =
κ

ϕE

and the density-dependent term is given by:1400

β =
κ− 1

RoϕE

which simplifies to Eq. G.28. The equilibrium yield Ce for a given fishing mortality rate is given1401

by Eq. G.29. These steady-state conditions are critical for determining various reference points1402

such as F MSY and BMSY.1403

G.3.2. MSY-BASED REFERENCE POINTS

When defining reference points for this assessment, the two commercial trawl fleets were used1404

to calculate MSY quantities. ISCAM calculates F MSY by finding the value of F e that results in the1405

zero derivative of Eq. G.29. This is accomplished numerically using a Newton-Raphson method1406

where an initial guess for F MSY is set equal to 1.5M (Martell 2011; Grandin and Forrest 2017).1407

G.4. ANALYTIC METHODS: STATE DYNAMICS

The estimated parameter vector in ISCAM is defined in Eq. G.30 in Section G.6.2. The estimated1408

parameters R0, h, and M , are the leading population parameters that define the overall scale1409

and productivity of the population.1410

Variance components of the model were partitioned using an errors in variables approach. The1411

key variance parameter is the inverse of the total variance ϑ2 (i.e., total variance). This parameter1412

can be fixed or estimated, and was estimated for this model. The total variance is partitioned1413

into observation and process error components by the model parameter ρ, which represents the1414

proportion of the total variance that is due to observation error (Eq. G.31) (Punt and Butterworth1415

1999; Deriso et al. 2007).1416

The unobserved state variables in Eq. G.32 include the numbers-at-age of sex s in year t (Nt,a,s),1417

the spawning stock biomass in year t (SBt) and the total age-specific total mortality rate (Zt,a,s).1418
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The initial numbers-at-age in the first year (Eq. G.33) and the annual recruits (Eq. G.34) are1419

treated as estimated parameters and used to initialize the numbers-at-age array.1420

Vulnerability-at-age is here assumed time-invariant and is modeled using a two-parameter logistic1421

function (Eq. G.35). The annual fishing mortality for each gear k in year t is the exponent of the1422

estimated vector Γk,t (Eq. G.36). The vector of log fishing mortality rate parameters Γk,t is a1423

bounded vector with a minimum value of −30.0 and an upper bound of 3.0. In arithmetic space1424

this corresponds to a minimum value of 9.36e−14 and a maximum value of 20.01 for annual fishing1425

mortality rates. In years where there are zero reported catches for a given fleet, no corresponding1426

fishing mortality rate parameter is estimated and the implicit assumption is there was no fishery1427

in that year.1428

State variables in each year are updated using Eqns. G.37–G.40, where the spawning biomass1429

is the product of the numbers-at-age and the mature biomass-at-age (Eq. G.37). The total1430

mortality rate is given by Eq. G.38, and the total catch (in weight) for each gear is given by Eq. G.39,1431

assuming that both natural and fishing mortality occur simultaneously throughout the year.1432

Numbers-at-age are propagated over time using Eq. G.40, where members of the plus group1433

(age A) are all assumed to have the same total mortality rate.1434

Recruitment to age k is assumed to follow a Beverton-Holt model for Arrowtooth Flounder (Eq. G.41)1435

where the maximum juvenile survival rate (so) is defined by so = κ/ϕE . For the Beverton-Holt1436

model, β is derived by solving Eq. G.41 for β conditional on estimates of h and Ro.1437

G.5. RESIDUALS, LIKELIHOODS, AND OBJECTIVE FUNCTION VALUE COMPONENTS

The objective function contains five major components:1438

1. The negative log-likelihood for the catch data1439

2. The negative log-likelihood for the relative abundance data1440

3. The negative log-likelihood for the age composition data1441

4. The prior distributions for model parameters1442

5. Three penalty functions that are invoked to regularize the solution during intermediate1443

phases of the non-linear parameter estimation. The penalty functions:1444

• constrain the estimates of annual recruitment to conform to a Beverton-Holt stock-recruit1445

function1446

• weakly constrain the log recruitment deviations to a normal distribution1447

• weakly constrain estimates of log fishing mortality to a normal distribution (∼ N(ln(0.2), 4.0))1448

to prevent estimates of catch from exceeding estimated biomass.1449

Tests showed the model was insensitive to changes in the penalty function parameters, indicating1450

that the other likelihood components and prior probability distributions were the most important1451

contributors to the objective function.1452

The objective function components are discussed in more detail in the following sections.1453

G.5.1. CATCH DATA

It is assumed that the measurement errors in the catch observations are log-normally distributed,1454

and the residuals given by:1455
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ηk,t = ln(Ck,t + o)− ln(Ĉk,t + o) (G.1)

where o is a small constant (e−10) to ensure the residual is defined in the case of a zero catch1456

observation. The residuals are assumed to be normally distributed with a user-specified standard1457

deviation σC . At present, it is assumed that observed catches for each gear k have the same1458

standard deviation. The negative log-likelihood (ignoring the scaling constant) for the catch data1459

is given by:1460

ℓC =Σ
k

[Tk ln(σC) +
Σt(ηk,t)

2

2σ2
C

] (G.2)

where Tk is the total number of catch observations for gear type k.1461

G.5.2. RELATIVE ABUNDANCE DATA

The relative abundance data are assumed to be proportional to spawning biomass that is vulnerable1462

to the sampling gear:1463

Vk,t =Σ
a

SBt,ae
−λk,tZt,avk,awa (G.3)

where vk,a is the age-specific selectivity of gear k, and wa is the mean-weight-at-age. A user1464

specified fraction of the total mortality λk,t adjusts the numbers-at-age to correct for survey timing.1465

The residuals between the observed and predicted relative abundance index is given by:1466

ϵk,t = ln(Ik,t)− ln(qk) + ln(Vk,t) (G.4)

where Ik,t is the observed relative abundance index, qk is the catchability coefficient for index k,1467

and Vk,t is the predicted vulnerable biomass at the time of sampling. The catchability coefficient1468

qk is evaluated at its conditional maximum likelihood estimate:1469

qk =
1

Nk Σ
t∈Ik,t

ln(Ik,t)− ln(Vk,t)

where Nk is the number of relative abundance observations for index k (Walters and Ludwig1470

1994). The negative log-likelihood for relative abundance data is given by:1471

ℓI =Σ
k
Σ
t∈Ik,t

ln(σk,t) +
ϵ2k,t
2σ2

k,t

(G.5)

where:1472

σk,t =
ρφ2

ωk,t

where ρφ2 is the proportion of the total error that is associated with observation errors, and ωk,t is1473

a user specified relative weight for observation t from gear k.1474

The ωk,t terms allow each observation to be weighted relative to the total error ρφ2. Note that if1475

ωk,t = 0 then Eq. G.5 is undefined; therefore, ISCAM adds a small constant to ωk,t (e−10, which1476

is equivalent to assuming an extremely large variance) to ensure the likelihood can be evaluated.1477

In this assessment, values for ωk,t were set to the inverse of the annual CVs from the survey or1478

Discard CPUE index (Table 4).1479
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G.5.3. AGE COMPOSITION DATA

Multivariate Distribution1480

Sampling theory suggests that age composition data are derived from a multinomial distribution1481

(Fournier and Archibald 1982). However, applications of ISCAM have typically assumed that1482

age-proportions are obtained from a multivariate logistic (also called logistic normal) distribution1483

(Schnute and Richards 1995; Richards et al. 1997). ISCAM departs from the traditional multinomial1484

model due to choices regarding weighting of the age-composition data in the objective function.1485

First, the multinomial distribution requires the specification of an effective sample size. This1486

weighting may be done arbitrarily or through iterative re-weighting Gavaris and Ianelli (2002),1487

and in the case of multiple and potentially conflicting age-proportions, this procedure may fail1488

to converge. The assumed effective sample size can have a large impact on the overall model1489

results.1490

A feature of the multivariate logistic distribution is that the age-proportion data can be weighted1491

based on the conditional maximum likelihood estimate of the variance in the age-proportions.1492

Therefore, the contribution of the age-composition data to the overall objective function is ‘self-1493

weighting’ and is conditional on other components in the model. Ignoring the subscript for gear1494

type for clarity, the observed and predicted proportions-at-age must satisfy the constraint:1495

A

Σ
a=1

pt,a = 1

for each year. The residuals between the observed (pt,a) and predicted proportions (p̂t,a) is given1496

by:1497

ηt,a = ln(pt,a)− ln(p̂t,a)−
1

A

A

Σ
a=1

[ln(pt,a)− ln(p̂t,a)] (G.6)

The conditional maximum likelihood estimate of the variance is given by1498

τ̂2 =
1

(A− 1)T

T

Σ
t=1

A

Σ
a=1

η2t,a

and the negative log-likelihood evaluated at the conditional maximum likelihood estimate of the1499

variance is given by:1500

ℓA = (A− 1)T ln(τ̂2). (G.7)

In short, the multivariate logistic likelihood for age-composition data is just the log of the residual1501

variance weighted by the number observations over years and ages. The multivariate logistic1502

was used in the 2015 assessment and bridge models in this assessment prior to the 1 bridge1503

model (Section 2.3.1).1504

Dirichlet Multinomial Distribution1505

The Dirichlet Multinomial (DM) was implemented in ISCAM for this assessment as a replacement1506

for iterative reweighting of age data and instead of the multivariate logistic likelihood, which had1507

convergence issues with several of the more complex model configurations. The DM avoids1508

estimates effective sample sizes from within the model. The distribution incorporates one additional1509
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parameter per fleet compared to the multinomial. This method has been tested against the1510

iterative reweighting approach introduced in McAllister and Ianelli (1997), with similar results1511

(Thorson et al. 2016).1512

The likelihood for the DM is similar to the multinomial likelihood, with two extra terms (Eq. G.8).1513

The first term of the DM likelihood Γ(n+1)
Πamax

a=1 Γ(nπ̃a+1)
is the multinomial likelihood. This term does not1514

depend on parameters and guarantees a multinomial likelihood when β >> n.1515

1516

L(π, β|π̃, n) = Γ(n+ 1)

Πamax
a=1 Γ(nπ̃a + 1)

Γ(β)

Γ(n+ β)
Γamax
a=1

Γ(nπ̃a + βπa)

Γ(βπa)
(G.8)

The effective sample size neff is:1517

neff =
n+ nβ

n+ β
(G.9)

The ‘saturating’ parameterization of the DM was implemeted in ISCAM for this assessment.1518

This parameterization will revert to the multinomial distribution with sufficiently large β (Eq. G.9)1519

i.e. neff ≃ n when β >> n. It provides an upper bound on low values of β̂, i.e. neff ≃ 1 + β when1520

n >> β.1521

G.5.4. STOCK RECRUITMENT

This stock assessment assumes Beverton-Holt recruitment. Annual recruitment and the initial1522

age-composition are treated as latent variables in ISCAM, and residuals between estimated1523

recruits and the deterministic stock-recruitment models are used to estimate unfished spawning1524

stock biomass and recruitment compensation. The residuals between the estimated and predicted1525

recruits is given by:1526

δt = ln(R̄ewt)−Rt (G.10)

where Rt is given by Eq. G.41, in which k is the age at recruitment. A bias correction term for the1527

lognormal process errors is included in Eq. G.41. The negative log likelihood for the recruitment1528

deviations is given by the normal density (ignoring the scaling constant):1529

ℓδ = n ln(τ) +
ΣT

t=1+k δ
2
t

2τ2
(G.11)

Eqs. G.10 and G.11 are key for estimating unfished spawning stock biomass and recruitment1530

compensation via the recruitment models. The relationship between (so, β) and (Bo, κ) is given1531

by:1532

so =
κ

ϕE
(G.12)

β =
κ− 1

Bo
(Beverton−Holt) (G.13)

where so is the maximum juvenile survival rate, and β is the density effect on recruitment, and1533

Bo is the unfished spawning stock biomass. Unfished steady-state spawning stock biomass1534

per recruit is given by ϕE , which is the sum of products between age-specific survivorship and1535

relative fecundity.1536
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G.5.5. PARAMETER ESTIMATION AND UNCERTAINTY

Parameter estimation and quantifying uncertainty was carried out using the tools available in AD1537

Model Builder. AD Model Builder (ADMB) is software for creating executable code to estimate1538

the parameters and associated probability distributions for nonlinear statistical models. The1539

software is freely available from the ADMB project. The ADMB software was used to develop1540

gfiscam, which was developed from the original ISCAM project.1541

There are five distinct components that make up the objective function that ADMB is minimizing:1542

f = negative loglikelihoods+constraints+priors for parameters+survey priors+convergence penalties.

The purpose of this section is to document all of the components that make up the objective1543

function.1544

Negative log-likelihoods1545

The negative log-likelihoods pertain specifically elements that deal with the data and variance1546

partitioning and have already been described in detail in earlier portions of Section G.5. There1547

are four specific elements that make up the vector of the objective function:1548

ℓ⃗ = ℓC , ℓI , ℓA, ℓδ. (G.14)

To reiterate, these are the likelihood of the catch data ℓC , likelihood of the survey data ℓI , the1549

likelihood of the age-composition data ℓA and the likelihood of the stock-recruitment residuals ℓδ.1550

Each of these elements are expressed in negative log-space, and ADMB attempts to estimate1551

model parameters by minimizing the sum of these elements.1552

Constraints1553

There are two specific constraints that are described here: (1) parameter bounds and (2) constraints1554

to ensure that a parameter vector sums to 0.1555

In ISCAM the user must specify the lower and upper bounds for the leading parameters defined1556

in the control file (ln(Ro), h, ln(Ms), ln(R̄), ln(Rinit), ρ, ϑ). All estimated selectivity parameters γ⃗k1557

are estimated in log space and have a minimum and maximum values of -5.0 and 5.0, respectively.1558

These values are hard-wired into the code, but should be sufficiently large/small enough to1559

capture a wide range of selectivities.1560

Estimated fishing mortality rates are also constrained (in log space) to have a minimum value of1561

-30, and a maximum value of 3.0, also hard-wired. Log annual recruitment deviations are also1562

constrained to have minimum and maximum values of -15.0 and 15.0 and there is an additional1563

constraint to ensure the vector of deviations sums to 0. This is necessary in order to be able to1564

estimate the average recruitment R̄.1565

Priors for parameters1566

Each of the seven leading parameters (eight if there are two sexes) specified in the control file1567

(ln(Ro), h, ln(Ms), ln(R̄), ln(Rinit), ρ, ϑ) are declared as bounded parameters and in addition1568

the user can also specify an informative prior distribution for each of these parameters. Five1569

distinct prior distributions can be implemented: uniform, normal, lognormal, beta and a gamma1570

distribution. See Table 5 for inital values and prior types and values used for this Arrowtooth1571

Flounder assessment.1572
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G.6. MODEL PARAMETERS, SYMBOLS, AND EQUATIONS

Table G.1. A list of symbols, constants and description for variables used in ISCAM.

Symbol Value Description
Indices
s Index for sex
a Index for age
t Index for year
k Index for gear
b Index for year block in time-varying selectivity
Model dimensions
S 2 Number of sexes
á, A 1, 20 Youngest and oldest age class (A is a plus group)
t́, T 1996, 2021 First and last year of catch data
K 7 Number of gears including survey gears
Observations (data)
Ck,t catch in weight by gear k in year t
Ik,t relative abundance index for gear k in year t
Estimated parameters
Ro Age-á recruits in unfished conditions
h Steepness of the stock-recruitment relationship
R̄ Average age-á recruitment from year t́ to T

R̄init Average age-á recruitment in year t́− 1
Ms Instantaneous natural mortality rate for sex s
âk,s,b, γ̂k,s,b Selectivity parameters for gear k, sex s, year block b
Γk,s,t Logarithm of the instantaneous fishing mortality for gear k, sex s, year t
ωt Age-á deviates from R̄ for years t́ to T

ωinit,t Age-á deviates from R̄init for year t́
qk Catchability parameter for survey k
ρ Fraction of the total variance associated with observation error
ϑ2 Total precision (inverse of variance) of the total error
Standard deviations
σ Standard deviation for observation errors in survey index
τ Standard deviation in process errors (recruitment deviations)
σC Standard deviation in observed catch by gear
Residuals
δt Annual recruitment residual
ηt Residual error in predicted catch
Fixed Growth & maturity parameters
l∞s Asymptotic length for sex s

ḱs Brody growth coefficient for sex s
tos Theoretical age at zero length for sex s
ás Scalar in length-weight allometry for sex s

b́s Power parameter in length-weight allometry for sex s
ȧs Age at 50% maturity for sex s
γ̇s Standard deviation at 50% maturity for sex s
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G.6.1. STEADY-STATE AGE-STRUCTURED MODEL

Assumptions in this steady-state model include:1573

• Unequal vulnerability-at-age1574

• Age-specific fecundity1575

• Beverton-Holt type recruitment1576

Parameters1577

The model includes the main leading parameters:1578

Θ = (Ro, h,M); Ro > 0; 0.2 ≤ h < 1.0; Ms > 0 (G.15)

and fixed growth and maturity parameters:1579

Φ = (l∞,s, ḱs, to,s, ás, b́s, ȧs, γ̇s, âk, γ̂k) (G.16)

Age-schedule information1580

Length-at-age is defined as:1581

la,s = l
(
1− e(−ks(a−to,s))

)
(G.17)

and weight-at-age as:1582

wa,s = ás(la,s)
b́s . (G.18)

Vulnerability at age is defined as:1583

va =

(
1 + e

(
−(â−a)

γ̂

))−1

(G.19)

and fecundity at age as:1584

fa,s = wa,s

(
1 + e

(
−(ȧs−as)

γ̇s

))−1

. (G.20)

Survivorship1585

Survivorship for unfished populations is defined as:1586

ιa,s =


1
S , a = 1

ιa−1,se
−Ms , 1 < a < A

ιa−1,s

(1−e−Ms )
, a = A

(G.21)

and for fished populations as:1587

ι̂a,s =


1
S , a = 1

ι̂a−1,se
−Ms−Feva−1,s , 1 < a < A

ι̂a−1,se
−Ms−Feva−1,s

(1−e−Ms−Feva,s )
, a = A

(G.22)
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Incidence functions1588

The incidence functions refer to the lifetime or per-recruit quantities. Spawning biomass per1589

recruit for unfished or fished populations is defined as:1590

ϕE =

S

Σ
s=1

∞

Σ
a=1

ιafa,s ϕe =

S

Σ
s=1

∞

Σ
a=1

ι̂a,sfa,s (G.23)

Vulnerable biomass per recruit for unfished or fished populations is defined as:1591

ϕB =
S

Σ
s=1

∞

Σ
a=1

ιawa,sva,s ϕb =
S

Σ
s=1

∞

Σ
a=1

ι̂aswa,sva,s (G.24)

Per recruit yield to the fishery is given by:1592

ϕq =

S

Σ
s=1

∞

Σ
a=1

ι̂a,swa,sva,s
Ms + Feva,s

(
1− e(−Ms−Feva,s)

)
(G.25)

Steady-state conditions1593

Biomass in unfished conditions is defined as:1594

Bo = RoϕB (G.26)

Equilibrium recruitment is defined according to the next two equations:1595

κ =
4h

1− h
(G.27)

Re = Ro

κ− ϕE
ϕe

κ− 1
; (Beverton−Holt) (G.28)

Equilibrium yield is given by:1596

Ce = FeReϕq (G.29)

1597

G.6.2. STATISTICAL CATCH-AGE MODEL

This model uses the Baranov catch equation and C* and F* as leading parameters.1598

Estimated or fixed parameters1599

Θ = (R0, h,Ms, R,Rinit, ϑ
2, ρ,Γk,t, {ωt}t́=T

t́=1−A
, {ωinit,t}t=t́−1

t=t́−A
) (G.30)

σ =

√
ρ

ϑ
; τ =

√
(1− ρ)

ϑ
(G.31)
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Unobserved states1600

The numbers-at-age, spawning stock biomass, and total mortality rates:1601

Nt,a,s; Bt,s; Zt,a,s (G.32)

Initial states1602

The initial numbers-at-age in the first year and the annual recruits are treated as estimated1603

parameters and used to initialize the numbers-at-age matrix:1604

Nt,a,s =
1

S
Rinite

ωinit,te−Ms(a−1); (t́−A) < t < 1; 2 ≤ a ≤ A (G.33)

Nt,a,s =
1

S
R̄eωt ; 1 ≤ t ≤ T ; a = 1 (G.34)

Age-specific selectivity for gear type k is a function of the selectivity parameters and the annual1605

fishing mortality for each gear k in year t:1606

vk,a =
1

1 + e
− (a−âk)

γ̂k

(G.35)

The annual fishing mortality for each gear k in year t is the exponent of the estimated vector Γk,t:1607

Fk,t = eΓk,t (G.36)

State dynamics (t > 1)1608

State variables in each year are updated using the following equations, where the spawning1609

biomass is the product of the numbers-at-age and the mature biomass-at-age.1610

Bt,s =Σ
a

Nt,a,sfa,s (G.37)

The total mortality rate is given by:1611

Zt,a,s = Ms +Σ
k

Fk,tvk,t,a,s (G.38)

and the total catch (in weight) for each gear is given by:1612

Ĉk,t =Σ
s
Σ
a

Nt,a,swa,sFk,tvk,t,a,s(1− e−Zt,a,s)

Zt,a,s

ηt

(G.39)

assuming that both natural and fishing mortality occur simultaneously throughout the year. The1613

numbers-at-age are propagated over time as:1614

Nt,a,s =


soEt−1

1+βEt−1
e(ωt−0.5τ2) a = 1

Nt−1,a−1,se
(−Zt−1,a−1,s) a > 1

Nt−1,a,se
(−Zt−1,a,s) a = A

(G.40)
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where members of the plus group (age A) are all assumed to have the same total mortality rate.1615

Recruitment model1616

Recruitment is defined as Beverton-Holt with a lognormal bias correction:1617

Rt =
soBt−k

1 + βBt−k
eδt−0.5τ2 ; (Beverton−Holt) (G.41)
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APPENDIX H. COMPUTATIONAL ENVIRONMENT

The source code for this assessment is available at https://github.com/pbs-assess/arrowtooth.1618

This version of the document was generated on 2022-10-18 00:39:11 with R version 4.2.0 (2022-1619

04-22 ucrt) (R Core Team 2022) and R package versions:1620

Package Version

bookdown 0.24
csasdown 0.1.0
dplyr 1.0.8
gfdata 0.1.2
gfiscamutils 0.0.0.9000
gfplot 0.2.1
ggplot2 3.3.5
glmmTMB 1.1.4
knitr 1.37
purrr 0.3.4
rmarkdown 2.16.2
TMB 1.9.1

The specific versions used to generate this report can be viewed at:1621

https://github.com/pbs-assess/gfiscam/tree/3eb1c741622

https://github.com/pbs-assess/gfdata/tree/6d042001623

https://github.com/pbs-assess/gfplot/tree/1878fae1624

https://github.com/pbs-assess/sdmTMB/tree/be1ec3a1625

https://github.com/pbs-assess/csasdown/tree/85881411626

https://github.com/pbs-assess/gfiscamutils/tree/e6bc86f1627

https://github.com/pbs-assess/arrowtooth/tree/dd5c8201628
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