These functions tidy, filter, and calculate frequencies for ages or lengths
over time for survey or commercial data. They can calculate raw frequencies
or frequencies in which the samples are weighted. See weight_comps()
for
details on the weighting procedure.
tidy_ages_raw(...) tidy_ages_weighted(...) tidy_lengths_raw(...) tidy_lengths_weighted(...) tidy_comps(dat, survey = c("SYN WCHG", "SYN HS", "SYN QCS", "SYN WCVI", "HBLL OUT N", "HBLL OUT S", "IPHC FISS"), year_range = NULL, spp_cat_code = 1, area_grep_pattern = "*", ageing_method_codes = NULL, usability_codes = c(0, 1, 2, 6), bin_size = 2, age_length = c("age", "length"), sample_type = c("survey", "commercial"), frequency_type = c("raw", "weighted"), dat_survey_sets = NULL, dat_catch = NULL, remove_unsexed = TRUE)
... | Arguments to pass to |
---|---|
dat | The input samples data frame from |
survey | A character vector of survey names to use. These should match the survey abbreviations in GFBio. All of the survey listed here will be rendered in the final plot in the order that they are specified to this argument. |
year_range | An optional range of years to plot. |
spp_cat_code | A numeric vector of species category codes to include
for the commercial samples. Defaults to |
area_grep_pattern | A |
ageing_method_codes | A numeric vector of ageing method codes to filter
on. Default to |
usability_codes | An optional vector of usability codes.
All usability codes not in this vector will be omitted.
Set to |
bin_size | Bin size for length binning. |
age_length | Should the function operate on ages or lengths? |
sample_type | Are the samples from a commercial or survey source? |
frequency_type | Should the frequencies or proportions be based on raw value or with weighted samples? |
dat_survey_sets | A data frame from |
dat_catch | A data frame from |
remove_unsexed | Logical |
The function tidy_comps()
is the main workhorse function, but as a user you
can use the helper functions tidy_ages_raw()
, tidy_ages_weighted()
,
tidy_lengths_raw()
, and tidy_lengths_weighted()
. These functions
simply call tidy_comps()
with appropriate argument values for age_length
and frequency_type
.
Note that the length_bin
column will contain the mid value of that length
bin. E.g. 13
with bin_size = 2
would represent a bin from 12
to 14
.
# NOT RUN { # # extract data with get_*() functions: # # main age/length data: # rs_comm_samples <- get_commercial_samples("redstripe rockfish", # discard_keepers = TRUE) # rs_survey_samples <- get_survey_samples("redstripe rockfish") # # # for weighting: # rs_catch <- get_catch("redstripe rockfish") # rs_survey_sets <- get_survey_sets("redstripe rockfish") # calculate raw age frequencies for survey data: tidy_ages_raw(rs_survey_samples, sample_type = "survey") # calculate weighted age frequencies for survey data: tidy_ages_weighted(rs_survey_samples, sample_type = "survey", dat_survey_sets = rs_survey_sets) # calculate raw length frequencies for survey data: tidy_lengths_raw(rs_survey_samples, sample_type = "survey", bin_size = 2) # calculate raw age frequencies for commercial data: tidy_ages_raw(rs_comm_samples, sample_type = "commercial") # calculate weighted age frequencies for commercial data: tidy_ages_weighted(rs_comm_samples, sample_type = "commercial", dat_catch = rs_catch) # calculate weighted length frequencies for commercial data: tidy_lengths_weighted(rs_comm_samples, sample_type = "commercial", bin_size = 2, dat_catch = rs_catch) # }