Functions for plotting age frequency data.

plot_ages(dat, max_size = 5, sex_gap = 0.2, year_increment = 2,
  ylab = "Age (years)", year_range = NULL, line_col = c(M =
  "#666666", F = "#f44256"), survey_cols = NULL, alpha = 0.2,
  grid_col = "grey95", diagonal_lines = seq(-2100, -1850, 10),
  count_label_size = 2.25)

Arguments

dat

Input data frame. Should be from tidy_ages_raw() or tidy_ages_weighted() or be formatted similarly. See details.

max_size

Maximum dot size (passed to ggplot2::scale_size_area()).

sex_gap

Horizontal gap between male and female bubbles.

year_increment

Increment between year labels on x axis.

ylab

Y axis label.

year_range

If not NULL, a the range of years to plot. Defaults to all years included in original data.

line_col

A named character vector of colors for male and females.

survey_cols

If not NULL, a named character vector for different colors for the various surveys.

alpha

Transparency for the fill color.

grid_col

Colour for the gridlines.

diagonal_lines

A numeric a vector of years to start diagonal lines at to help trace cohorts. Note that these are passed to ggplot2::geom_abline() as intercepts.

count_label_size

The size of the total count labels along the top. Passed to ggplot2::geom_text().

Details

  • tidy_ages_raw() or tidy_ages_weighted() prepare PBS data for plot_ages(). These work across one or multiple species.

  • plot_ages() Plots age frequencies for each year for selected surveys for a single species. Input data frame should come from tidy_ages_raw() or tidy_ages_weighted() or follow the following format: The input data frame must have the columns (in any order): survey, year, sex (coded as "M" and "F"), age, proportion, total (for the total sample number label).

Examples

# NOT RUN {
pop_samples %>%
  tidy_ages_raw(survey = "SYN QCS") %>%
  plot_ages()

# main age/length data:
rs_comm_samples <- get_commercial_samples("redstripe rockfish")
rs_survey_samples <- get_survey_samples("redstripe rockfish")
#
# for weighting:
rs_catch <- get_catch("redstripe rockfish")
rs_survey_sets <- get_survey_sets("redstripe rockfish")

# survey raw age frequencies:
tidy_ages_raw(rs_survey_samples,
  sample_type = "survey") %>%
  plot_ages()

# survey weighted age frequencies:
tidy_ages_weighted(rs_survey_samples,
  sample_type = "survey",
  dat_survey_sets = rs_survey_sets) %>%
  plot_ages()

# commercial raw age frequencies:
tidy_ages_raw(rs_comm_samples,
  sample_type = "commercial") %>%
  plot_ages()
# }