Extract parameter simulations from the joint precision matrix
Source:R/gather-spread.R
gather_sims.Rd
spread_sims()
returns a wide-format data frame. gather_sims()
returns a
long-format data frame. The format matches the format in the tidybayes
spread_draws()
and gather_draws()
functions.
Usage
spread_sims(object, nsim = 200, n_sims = deprecated())
gather_sims(object, nsim = 200, n_sims = deprecated())
Arguments
- object
Output from
sdmTMB()
.- nsim
The number of simulation draws.
- n_sims
Deprecated: please use
nsim
.
Value
A data frame. gather_sims()
returns a long-format data frame:
.iteration
: the sample ID.variable
: the parameter name.value
: the parameter sample value
spread_sims()
returns a wide-format data frame:
.iteration
: the sample IDcolumns for each parameter with a sample per row
Examples
m <- sdmTMB(density ~ depth_scaled,
data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie())
head(spread_sims(m, nsim = 10))
#> .iteration X.Intercept. depth_scaled range phi tweedie_p sigma_O
#> 1 1 2.947281 -0.6113464 21.28292 14.96395 1.579234 2.649385
#> 2 2 2.867277 -0.7282022 50.56038 15.63864 1.583225 1.871312
#> 3 3 2.570547 -0.5759993 81.02526 13.86308 1.582175 1.204293
#> 4 4 3.305925 -0.5416168 26.01008 16.21788 1.588699 1.674452
#> 5 5 2.870912 -0.7513359 35.35486 15.06749 1.595577 2.000633
#> 6 6 2.901625 -0.7516155 25.05987 14.38858 1.614982 2.741510
head(gather_sims(m, nsim = 10))
#> .iteration .variable .value
#> 1 1 X.Intercept. 3.120602
#> 2 2 X.Intercept. 3.072890
#> 3 3 X.Intercept. 2.688049
#> 4 4 X.Intercept. 3.006871
#> 5 5 X.Intercept. 3.120740
#> 6 6 X.Intercept. 2.509646
samps <- gather_sims(m, nsim = 1000)
if (require("ggplot2", quietly = TRUE)) {
ggplot(samps, aes(.value)) + geom_histogram() +
facet_wrap(~.variable, scales = "free_x")
}
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.