Turn sdmTMB model output into a tidy data frame
Arguments
- x
Output from
sdmTMB()
.- effects
A character value. One of
"fixed"
('fixed' or main-effect parameters),"ran_pars"
(standard deviations, spatial range, and other random effect and dispersion-related terms), or"ran_vals"
(individual random intercepts, if included; behaves likeranef()
).- model
Which model to tidy if a delta model (1 or 2).
- conf.int
Include a confidence interval?
- conf.level
Confidence level for CI.
- exponentiate
Whether to exponentiate the fixed-effect coefficient estimates and confidence intervals.
- silent
Omit any messages?
- ...
Extra arguments (not used).
Details
Follows the conventions of the broom and broom.mixed packages.
Currently, effects = "ran_pars"
also includes dispersion-related terms
(e.g., phi
), which are not actually associated with random effects.
Standard errors for spatial variance terms fit in log space (e.g., variance terms, range, or parameters associated with the observation error) are omitted to avoid confusion. Confidence intervals are still available.
Examples
fit <- sdmTMB(density ~ poly(depth_scaled, 2, raw = TRUE),
data = pcod_2011, mesh = pcod_mesh_2011,
family = tweedie()
)
tidy(fit)
#> # A tibble: 3 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 3.65 0.281 3.10 4.20
#> 2 poly(depth_scaled, 2, raw = TRUE)1 -1.54 0.186 -1.90 -1.17
#> 3 poly(depth_scaled, 2, raw = TRUE)2 -1.11 0.101 -1.31 -0.913
tidy(fit, conf.int = TRUE)
#> # A tibble: 3 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 3.65 0.281 3.10 4.20
#> 2 poly(depth_scaled, 2, raw = TRUE)1 -1.54 0.186 -1.90 -1.17
#> 3 poly(depth_scaled, 2, raw = TRUE)2 -1.11 0.101 -1.31 -0.913
tidy(fit, "ran_pars", conf.int = TRUE)
#> # A tibble: 4 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 range 19.1 14.0 4.58 80.0
#> 2 phi 14.0 0.677 12.8 15.4
#> 3 sigma_O 2.14 0.941 0.906 5.07
#> 4 tweedie_p 1.58 0.0153 1.55 1.61
pcod_2011$fyear <- as.factor(pcod_2011$year)
fit <- sdmTMB(density ~ poly(depth_scaled, 2, raw = TRUE) + (1 | fyear),
data = pcod_2011, mesh = pcod_mesh_2011,
family = tweedie()
)
tidy(fit, "ran_vals")
#> # A tibble: 4 × 5
#> term estimate std.error conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 fyear_2011 0.0163 0.187 -0.351 0.384
#> 2 fyear_2013 0.177 0.188 -0.192 0.545
#> 3 fyear_2015 0.232 0.189 -0.139 0.603
#> 4 fyear_2017 -0.431 0.205 -0.833 -0.0287